Давайте я вам объясню. Координаты, имеют вид (x;y), то есть, если дана некая функция, в нашем случае игрек зависит от икса. Нам требуется лишь подставить значение икса в координате, и посмотреть, будет ли координата игрека равна координате игрека данной функции. Сейчас вы поймете: Мы берем точку А (2;-1), и что бы проверить, проходит ли функция через данную точку, мы должны, взять значение икса в данной точке, и подставить данное значение в функцию:
Отсюда следует, что функция проходит через данную точку.
Данную операцию можно проделать и 2 задании, но зачем? Мы уже итак знаем что при х=2, у=-1. А значит, что функция не проходит через точку В.
(1) (2) Прежде всего построим графики заданных функций. (См рис1.FIGURE.png) Далее. Найдем точки пересечения графиков. Из картинки видно, что точки пересечения (Обозначим их А0 и А2) имеют координаты А0(-1; 0) и А2(2; 3). Убедиться в этом можно, подставив уравнения (1) и (2) поочередно координаты точек и проверить, обращаются ли они в верные равенства. строго говоря, для нахождения координат точек пересечения в нашем случае решается система уравнений (1), (2): (1) (2) Два уравнения, два неизвестных.
Приравнивая правые части (1), (2) получаем одно уравнение с одним неизвестным:
Приводим подобные слагаемые.
(3) Решаем полученное уравнение (3)
Соответствующие им значения y1, y2 можно найти, подставив например значения x1, x2 в уравнение (2)
Вот мы и получили две точки А0(x1; y1), A2(x2, y2)
Они нам понадобятся при простановке пределов интегрирования. Так теперь Разберемся, что получится, если нашу фигуру вращать вокруг оси OX. Смотрим риснуок 2 (FIGURE_OX.png), На котором изображено поперечное сечение, полученной фигуры вращения. Такая "чаша", со стенками переменной толщины. В сечении наша исходная фигура (параболический сегмент) зеркально отразилась относительно оси OX. Точки с координатами (x, y) отразились в точки (x, -y). Соответственно прямая y=x+1 отразилась в y=-x-1, а парабола в параболу . Объем "чаши" будет равен: (4) где объем фигуры ограниченной, параболами и плоскостью перпендикулярной плоскости рисунка и проходящей через прямую . ? , объем конуса ограниченного прямыми и той же плоскостью проходящей через
Если нашу "чашу" без выемки конуса "нашинковать" плоскостями перпендикулярными плоскости рисунка и при этом параллельными плоскости основания конуса, мы разбиваем ее на множество мелких ("блинов") элементарных цилиндров толщиной dx. Объем каждого такого цилиндра будет равен:
Суммарный объем будет равен сумме объемов элементарных цилиндров. Переходя к пределу при dx⇒0 получаем: (5)
(6)
(7) С учетом (7) интеграл (6) равен: (8)
Аналогично объем конуса равен (9) Проделывая вычисления находим: (10) Тогда с учетом (4), (8), (10) искомый объем равен:
Вкратце по 2му пункту смотрите рисунок 3 (FIGURE_OY). Тут наша фигура получилась более "хитрая". Придется, дробить область на части
Сам объем будем искать в виде такой суммы: Объем усеченного "криволинейного конуса" (сечение А9, А1, А2, А8) - Объем конуса (А9, А0, А1) + объем ус. конуса(А2, А3, А5, А7) + объем "криволинейного конуса"(А3, А4, А6, А7) - объем "криволинейного конуса" (А5, А4, А6).
Черт возьми! >5000 символов не лезет. Но надеюсь, принцип ясен.