2. Найдите тангенс угла наклона касательной, проведенной к графику функции у = 2х^2 в его точке с абсциссой х0 = –1. Тангенс угла наклона равен производной в этой точке y' = (2x^2)' = 4x y(-1) = 4(-1) = -4
3. Найдите угловой коэффициент касательной, проведенной к графику функции у = 1/3х3 в его точке с абсциссой х = – 1. Угловой коэффициент касательной равен производной в этой точке y' = (1/3)x^3)' = x^2 y(-1) = (-1)^2 = 1 4. Функция f(x) возрастает на промежутках (– 5; –2) и (6;10) и убывает на промежутке (– 2;6). Укажите промежутки, на которых производная функции: f '(x) > 0; f '(x) < 0. f '(x) > 0 на промежутках (-5;-2) и (6;10) ; f '(x) < 0. на промежутке (-2;6)
График расположен выше оси ОХ. Точки пересечения с осью ОХ: . Графики функций - это параболы , ветви которых направлены вниз, а вершины в точках (0, а). При х=0 sin0=0 и точка (0,0) является точкой пересечения графика у=|sinx| и оси ОУ, на которой находятся вершины парабол. При а=0 графики y=|sinx| и y=x² имеют одну точку пересе- чения - (0,0), при а<0 точек пересе- чения вообще нет. А при а>0 будет всегда 2 точки пересе- чения этих графиков и соответственно, будет выполняться заданное неравенство. То есть одна точка пересечения при а=0. ответ: а=0.
х - вес первого слитка, у - вес второго слитка
0,64х+0,84у=0,76(х+у)
х+у=50
Решаем:
у=50-х
0,64х+0,84(50-х)=0,76(х+50-х)
0,64х+42-0,84х=38
0,2х=4, х=4/0,2=20, у=50-20=30
ответ: первый слиток 20 грамм, второй слиток 30 грамм