Объяснение:
Функция - есть отношение или зависимость одной величины от другой по определённому закону, который и прописан в самой формуле функции.
Выражение y=f(x) расшифровывается как "Переменная у зависит от переменной х по формуле (закону) f.
Для того, чтобы правильно построить график какой-либо функции, вам необходимо понимать (видеть) общие для множества функций признаки.
К примеру, видеть, линейная это функция или квадратичная, экспоненциальная; периодическая, непрерывная и т.д. Все эти слова не должны быть для вас пустым звуком.
Если вы хотите правильно построить график, нужно начинать с области определения функции, т.е. определить, какие значения может принимать х, чтобы выражение имело решение. К примеру у=(1/х) - в таком выражении х не может быть равным 0, соответственно в точке х=0 - будет разрыв графика функции.
Я не могу здесь описывать весь раздел математики по всем видам функций, но вы должны следовать такому алгоритму при построении:
1) упростить выражение, если это возможно;
2) определить тип функции;
3) найти область определения функции;
4) в зависимости пунктов 2) и 3) найти координаты от 2 (для линейной функции) до 10 (для всех других) точек функции методом поочередного вычисления значения у для конкретного значения х, взятых с определенным вами же промежутком приращения;
5) построить и соединить полученные точки линиями (отрезками или кривыми) в зависимости от пунктов 2) и 3).
Если вы ничего не поняли из вышеописанного, а график строить надо, просто вычислите 10 координат точек графика функции, начиная с
х = -5 и заканчивая
х = 5 с приращением 0,5 каждую новую точку.
пример: функция у=х²-1
подставляем
х = -5, получаем у = 24
х= -4,5 получаем у= 19,25
х= -4 получаем у= 15 ...
.. и так далее до х=5.
В результате получим классическую параболу, сдвинутую вдоль оси ординат (у) вниз на 1 единицу.
Надеюсь, мой труд не пропал зря.
ответ:
раскроем выражение в уравнении
((xy+x)−3)2+((xy+y)−4)2=0
получаем квадратное уравнение
2x2y2+2x2y+x2+2xy2−14xy−6x+y2−8y+25=0
это уравнение вида
a*x^2 + b*x + c = 0
квадратное уравнение можно решить
с дискриминанта.
корни квадратного уравнения:
x1=d−−√−b2a
x2=−d−−√−b2a
где d = b^2 - 4*a*c - это дискриминант.
т.к.
a=2y2+2y+1
b=2y2−14y−6
c=y2−8y+25
, то
d = b^2 - 4 * a * c =
(-6 - 14*y + 2*y^2)^2 - 4 * (1 + 2*y + 2*y^2) * (25 + y^2 - 8*y) = (-6 - 14*y + 2*y^2)^2 - (4 + 8*y + 8*y^2)*(25 + y^2 - 8*y)
уравнение имеет два корня.
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b - sqrt(d)) / (2*a)
6(x²-(5-x)²)=5x(5-x)
6x²-6(25-10x+x²)=25x-5x²
6x²-150+60x-6x²-25x+5x²=0
5x²+35x-150=0
x²+7x-30=0
D=7²+4*30=49+120=169=13²
x(1)=(-7+13)/2=6/2=3
x(2)=(-7-13)/2=-20/2=-10
y(1)=5-3=-2
y(2)=5+10=15