Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 34.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=34
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=34
2n+1+2n+5=34
4n=28
n=7
7; 8 и 9;10
(10²-9²)+(8²-7²)=19+15
19+15=34 - верно
Одно число n, следующее за ним (n+1)
Разность квадратов двух последовательных натуральных чисел
(n+1)²-n²
(Из бо`льшего вычитаем меньшее, потому что по условию разности квадратов неотрицательны
Следующие два последовательных натуральных чисел это (n+2) и (n+3)
Разность квадратов следующих двух последовательных натуральных чисел
(n+3)²-(n+2)²
(Здесь тоже из бо`льшего вычитаем меньшее)
Сумма разностей квадратов по условию равна 34.
Уравнение
((n+1)²-n²) + ((n+3)²-(n+2)²)=34
(n²+2n+1-n²)+(n²+6n+9-n²-4n-4)=34
2n+1+2n+5=34
4n=28
n=7
7; 8 и 9;10
(10²-9²)+(8²-7²)=19+15
34=34 - верно
(sinx-cosx)(1+1/2sin2x)=0
sinx-cosx=0
sinx-sin(π/2-x)=0
2(x-π/4)cosπ/4=0
sin(x-π/4)=0
x-π/4=πn
x=π/4+πn
1+1/2sin2x=0
1/2sin2x=-1
sin2x=-2 нет решения