А) Время движения скорого поезда: x - 1/3 (ч) б) Путь, пройденный товарным поездом до встречи со скорым: S₁ = v₁x = 66x (км) в) Путь, пройденный скорым поездом до встречи с товарным: S₂ = v₂(x - 1/3) = 90(x - 1/3) = 90x - 30 Так как расстояние S = АВ = 256 км, то: S = S₁+S₂ 256 = 66x + 90x - 30 156x = 286 x = 1 5/6 (ч) Таким образом, товарный поезд находился в пути до встречи со скорым 1 час 50 мин и за это время: S₁ = v₁x = 66 * 1 5/6 = 121 (км) Скорый поезд находился в пути до встречи с товарным 1 час 30 мин и за это время S₂ = v₂(x - 1/3) = 90 * 1 5/6 - 30 = 165 - 30 = 135 (км)
ответ: поезда встретятся на расстоянии 121 км от станции А и 135 км от станции В.
Пусть х км/ч - скорость катера, то (х-2) км/ч скорость катера против течения, а (х+2) скорость катера по течению, значит время затраченное по реке: 15/х-2 + 6/х+2, а оно равно времени по озеру: 22/хСоставим уравнение:15/х-2+6/х+2=22/х (каждое слагаемое умножим на "х(х-2)(х+2)15х(х+2)+6х(х-2)=22х^2-8815х^2+30x+6x^2-12x-22x^2+88=0-x^2+18x+88=0x^2-18x-88=0 Д= b^2-4ac= (-18)^2 - 4(1)(-88)= 676x1= -b+-Корень из Дискриминанта / 2а = 18+26/2=22;х2= 18-26/2=-4 Посторонний корень, т.к. скорость не может быть отрицательной.ответ: 22 км/ч
Варианты 1*126 , 2*63 , 7*18 , 9*14.