М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
muratov20011
muratov20011
20.06.2021 22:49 •  Алгебра

Решите . нужно решить с проверкойм

👇
Ответ:
mertysan
mertysan
20.06.2021

 \sqrt{x {}^{2} - 9 } = 4 \\ x {}^{2} - 9 = 16 \\ x {}^{2} = 25 \\ x = + - 5 \\

проверка

 \sqrt{( - 5) {}^{2} - 9} = 4 \\ \sqrt{25 - 9} = 4 \\ \sqrt{16} = 4 \\ 4 = 4

5 тоже подходит

 \sqrt{x} + 6 = 4 \\ \sqrt{x} = - 2

неверно.

4,7(43 оценок)
Открыть все ответы
Ответ:
Alexander169
Alexander169
20.06.2021

Для острых углов известно соотношение   sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.

tg1/(n+6)>1/(n+6).

 Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом  ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞  ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.

 

Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного.  ⇒∑tg1/(n+6) - расходящийся ряд.

 

 

 

 

4,8(18 оценок)
Ответ:
dalikha06
dalikha06
20.06.2021

Для острых углов известно соотношение   sinα<α<tgα . α=1/(n+6) стремится к 0 при n->∞.

tg1/(n+6)>1/(n+6).

 Исходный ряд сравним с рядом ,общий член которого 1/(n+6).Этот ряд расходящийся, так как его можно сравнить с расходящимся обобщённо-гармоническим рядом  ∑1/n : lim (1/n)/(1/n+6)=1≠0 при n->∞  ⇒ оба ряда ∑1/n и ∑1/(n+6) расходятся.

 

Ряд ∑1/(n+6) является минорантным, а ряд ∑tg1/(n+6) мажорантным. Из расходимости минорантного ряда следует расходимость мажорантного.  ⇒∑tg1/(n+6) - расходящийся ряд.

 

 

 

 

4,5(33 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ