План действий: 1) ищем производную 2) приравниваем к нулю, решаем получившееся уравнение 3) определяем, какие корни попадают в указанный промежуток 4) ищем значение функции на концах промежутка и в точке, 5) выбираем наибольший ответ Начали. 1)Производная = 6/Cos²x - 6 2) 6/Cos²x - 6 =0 6/Cos²x = 6 Cos²x = 1 а) Cos x = 1 б) Cos x = -1 x = 2πk, где k∈Z x =πn,где n∈Z 3) Из этих ответов в указанный промежуток попадает только х =0 4) у = 6tg 0 - 6·0 +6 = 6 y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2 5) у =6
Обозначим искомое число как , по условию . Перенесём единицу в левую часть и разложим разность кубов на множители:
Понятно, что , тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок . Поэтому , равны либо и , либо и .
Случай 1. Из первого уравнения следует, что , тогда после подстановки во второе уравнение находим . - действительно простое число, так что нас устраивает.
Случай 2. Тут всё немного сложнее: уравнение на квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение , у которого только один натуральный корень . Подставляем в первое равенство: - простое число, так что и тут нас всё устраивает.
1) ищем производную
2) приравниваем к нулю, решаем получившееся уравнение
3) определяем, какие корни попадают в указанный промежуток
4) ищем значение функции на концах промежутка и в точке,
5) выбираем наибольший ответ
Начали.
1)Производная = 6/Cos²x - 6
2) 6/Cos²x - 6 =0
6/Cos²x = 6
Cos²x = 1
а) Cos x = 1 б) Cos x = -1
x = 2πk, где k∈Z x =πn,где n∈Z
3) Из этих ответов в указанный промежуток попадает только х =0
4) у = 6tg 0 - 6·0 +6 = 6
y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2
5) у =6