

) U (
; -2) U (-2;
) U (
; 7).











) U (
; -2) U (-2; 2) U (2;
) U (
; 7).
, по условию
. Перенесём единицу в левую часть и разложим разность кубов на множители:
, тогда обе скобки-сомножителя - натуральные числа, большие 1. С другой стороны, произведение
представляется в виде двух натуральных сомножителей, больших единицы, единственным (с точностью до перестановок
. Поэтому
,
равны либо
и
, либо
и
.
, тогда после подстановки во второе уравнение находим
.
- действительно простое число, так что
нас устраивает.
квадратное, а не линейное, как в первом случае. Упростив, получаем уравнение
, у которого только один натуральный корень
.
- простое число, так что и тут нас всё устраивает.
,
1) ищем производную
2) приравниваем к нулю, решаем получившееся уравнение
3) определяем, какие корни попадают в указанный промежуток
4) ищем значение функции на концах промежутка и в точке,
5) выбираем наибольший ответ
Начали.
1)Производная = 6/Cos²x - 6
2) 6/Cos²x - 6 =0
6/Cos²x = 6
Cos²x = 1
а) Cos x = 1 б) Cos x = -1
x = 2πk, где k∈Z x =πn,где n∈Z
3) Из этих ответов в указанный промежуток попадает только х =0
4) у = 6tg 0 - 6·0 +6 = 6
y = 6tg (-π/4) - 6·π/4 +6= -6 -6π/4 +6 = -3π/2
5) у =6