Пусть х грамм масса одного вещества, а у грамм второго. Так как масса смеси, состоящей из двух вещество равна 900г, получим первое уравнение: х + у = 900. Тогда после того, как из этой смеси взяли первого вещества и 70% второго, в ней осталось первого вещества на 18г меньше, чем второго, получим следующее уравнение: (у - 70%у) - (х - 5/6х) = 18.
Необходимо найти остаток смеси х и остаток смеси у.
Найдём значение "х" и "у".
(у - 70%у) - (х - 5/6х) = 18 ;
100% - 70 % = 30 %;
Преобразуем уравнение:
30%у - 1/6х = 18;
3/10у - 1/6х = 18;
Найдём общий знаменатель:
3/10у * 6 - 1/6х * 10 = 18 * 60;
18/60у - 10/60х = 1080/60;
Сокращаем дроби:
18у - 10х = 1080;
10х = 18у - 1080;
Сокращаем на 10:
х = 1,8у - 108;
Теперь подставим значение х в первое уравнение, получим:
900 = х + у;
х = 900 - у;
х = 1,8у - 108;
900 - у = 1,8у - 108;
-2,8у = - 1008;
Упрощаем выражение:
-2,8у * (-1) = - 1008 * (-1);
2,8у = 1008;
у = 360 грамм;
х = 540 грамм;
Найдём остаток от "х" и "у".
у - 70%у = 0,3у = 0,3 * 360 = 108 грамм (столько осталось смеси у);
х - 5/6х = 1/6х = 1/6 * 540 = 90 грамм (столько осталось смеси х) ;
Проверяем:
После того, как из смесей выделили определенное количество, смесь у осталось на 18 грамм больше, чем смеси х.
Из этого следует:
(у - 70%у) - (х - 5/6х) = 18;
Подставляем значения:
108 - 90 = 18 ;
18 = 18 (Значения найдены верно);
ответ: Первого вещества осталось 90 грамм, а второго вещества осталось 108 грамм.
Свойства неравенств:
1. Если к обеим частям верного неравенства прибавить (отнять) одно и тоже число, то получится верное неравенство.
2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства останется прежним; если же - на отрицательное, то знак неравенства изменится на противоположный.
3. Неравенства одного знака можно складывать.
4. Неравенства одного знака можно умножать, если их левые и правые части положительны.
№ 1. 4 < а < 9 и 3 < b < 8.
1) 4 < а < 9 2) 4 < а < 9 3) 3 < b < 8
3 < b < 8 3 < b < 8 -9 < -a < -4
7 < a + b < 17 12 < ab < 72 -6 < b - a < 4
4) 16 < 4a < 36 5) 12 < 3a < 27
9 < 3b < 24 -32 < -4b < -12
25 < 4a + 3b < 60 -20 < 3a - 4b < 15
№ 2. Средняя линия трапеции равна полусумме оснований,
т.е. с = (a + b)/2.
10 < а < 14
9 < b < 16
19 < a + b < 30
9,5 < (a + b)/2 < 15
9,5 < c < 15