Пусть А- точка пересечения прямой а и плоскости α , если
прямая а лежит в плоскости β , то А также лежит в плоскости
β , а значит плоскости имеют общую точку , что противоречит
их параллельности , значит а не лежит в плоскости β ,
проведем через прямую а произвольную плоскость ω и пусть
ω ∩ α =b ; ω ∩ β = c ; A∈ a ⇒ А ∈ ω ; A ∈ α ⇒ A ∈ b ⇒ A = a ∩ b
, так как плоскость ω пересекает параллельные плоскости по
параллельным прямым , то b || c, прямые a ; b и с лежат в
одной плоскости и прямая а пересекает прямую b ⇒ a
пересекает также прямую с , пусть а ∩ с = В , В ∈ с ⇒ В ∈ β , В
∈ а и В ∈ β ⇒ В = а ∩ β , то есть прямая а и плоскость β имеют
общую точку и так как а не лежит в плоскости β , то она ее
пересекает ее в точке В
(10х-4) (10х+4) = 0
произведение равно нулю, когда один из множителей равен нулю т.е.
10х-4 = 0 ⇒ х₁ = 0.4
10х +4 =0 ⇒ х₂= - 0.4
ответ: -0.4, 0.4