Для геометрической прогрессии со знаменателем Q и первым членом B₁ верно следующее: Bₙ = Qⁿ⁻¹ * B₁, откуда Qⁿ⁻¹ = Bₙ : B₁ = 1024 : 2 = 512. Итак, отмечаем: Qⁿ⁻¹ = 512. Формула для суммы первых n членов прогрессии:
Sₙ = B₁(Qⁿ - 1)/(Q - 1) = B₁(Q * Qⁿ⁻¹ – 1) / (Q – 1) = 2*(512Q - 1) / (Q - 1) = 2046 ⇒
1024Q - 2 = 2046(Q - 1) ⇒ 1024Q - 2 = 2046Q - 2046 ⇒
2046Q - 1024Q = 2046 - 2 ⇒ 1022Q = 2044 ⇒ Q = 2044 : 1022, Q = 2.
Далее Qⁿ⁻¹ = 512 ⇒ 2ⁿ⁻¹ = 512 = 2⁹ ⇒ n - 1 = 9, откуда n = N = 10,
за N заново обозначили количество членов данной прогрессии
ответ: Q = 2, N = 10
Проверка: 2 + 4 + 8 + 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2046
Объяснение:
радиус равен корню из 16. 4 единицы. Центр х+2=0 и у+1=0
(-2;-1) На приложенном рисунке центр нарисован НЕПРАВИЛЬНО! он должен быть на 1 единицу НИЖЕ,
потом откладываете влево и вправо от центра по 4 единицы и получаете границы слев и справа. Из центра вверх и вниз по 4 единицы. И вы имеете 4 базовые точки рисуя плавные дуги подходящего рабиуса вы соединяете все 4 точки в окружностьМожете подставить в уравнение Х=0 получите из квадратного уравнения еще две точки на оси У. потом У=0 и получите еще точки на оси Х. останется только их аккуратно соединить.
вторым окружность