М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ajamshid1976p042ct
ajamshid1976p042ct
16.07.2021 08:59 •  Алгебра

Найдите корень уравнения : 0.1х-2=-0.9.

👇
Ответ:
Privet206
Privet206
16.07.2021
0,1x=-0,9+2
0,1x=1,1
x=11
4,8(59 оценок)
Открыть все ответы
Ответ:
torebekkismetov
torebekkismetov
16.07.2021

1)Рассм. прямоугольный треуг-к АВD, образованный одной из диагоналей и 2 сторонами прямоугольника(а - первая сторона, b - вторая сторона). Тогда по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов:

45^2 = a^2 + b^2

Площадь прямоугольника - это произведение сторон а и b:

a * b = 972

a^2 + b^2 можно представить как полный квадрат:

(a + b)^2 - 2ab = a^2 + b^2              (a^2 + b^2 + 2ab) - 2ab = a^2 + b^2

2)Теперь вместо ab подставляем 972, вместо a^2 + b^2 - 45^2 (или 2025)

(a + b)^2 - 1944 = 2025

(a + b)^2 = 3989

a + b = кв. корень 3969 = 63 

3)Теперь решим систему нера-в:

a + b = 63

a * b = 972, выражаем а через 1-ое урав-е и подставляем во второе:

a = 63 - b

(63 - b) * b = 972

a = 63 - b

63b - b^2 - 972 = 0

a = 63 - b

(b - 27) * (b - 36) = 0 , (следовательно 27 и 36 - корни кв. урав-я),

а = 36                      a = 27

b = 27,                     b = 36, следовательно

27 см и 36 см - длины сторон прямоугольника.

ответ: 27 и 36

4,5(91 оценок)
Ответ:
olyaolya22
olyaolya22
16.07.2021

5*25^-x - 126 * 5^-x + 25 ≤ 0

умножим лево и право на 25^x (имеем право - это положительное число, ничего в неравенстве не изменится)

и вспомним что 25^x = (5^x)^2

5 - 126*5^x + 25*25^x ≤ 0

5^x = t

5 - 126t + 25t^2 ≤ 0

D=126^2 - 4*5*25 = 15876 - 500 = 124^2

t12= (126 +-124)/50 = 1/25   5

(t - 1/5)(t - 5) ≤ 0

метод интервалов

[1/25] [5]

5^x = t

t>=1/25   5^x>=1/25  5^x≥ 5^-2  x>=-2

t<=5    5^x <=5  x<=1

x∈[-2  1]

смотрим второе

log(x+1)^2 x^2 ≤ 1

ОДЗ x^2 ≠ 0  x≠0 (x^2 > 0 во всех остальных случаях)

(x+1)^2 ≠ 0  x≠-1

(x+1)^2≠ 1  x≠0 x≠-2

применяем метод рационализации

log(f(x)) g(x) ≤ log(f(x)) h(x) ⇔ (f(x)-1)(g(x) - h(x)) ≤ 0 при выполнении ОДЗ

log(x+1)^2 x^2 ≤ log(x+1)^2 (x+1)^2

((x+1)^2 - 1)(x^2 - (x+1)^2 ) ≤ 0

(x+1 -1 )(x+1 +1)(x-x-1)(x+x+1) ≤ 0

x*(x+2)*(-1)*(2x+1) ≤ 0

x(x+2)(2x+1)≥0

метод интервалов

(-2) [-1/2] (0)

x∈ (-2  -1) U (-1   -1/2] U (0 +∞) пересекаем с первым ответом x∈[-2  1]

ответ x∈(-2 -1) U (-1  -1/2] U (0  1]

4,8(93 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ