Выделим целую часть у=1+3\х-3 и построим график . Графиком будет гипербола с асимптотами х=3 вертикальной и у=1 горизонтальной Затем построим у=х это биссектриса первого и третьего координатных углов и третий график х=-2. Фигура будет ограничена двумя графиками у=х\х-3 у=х х=-2 Пределы интегрирования от -2 до 0 Найдём сначала площадь верхней части это интеграл от -2 до 0 от суммы 1+3\х-3 по де х интеграл будет равен х+3Ln I x-3I на промежутке от -2 до 0 получим 0+3 Ln3 -(-2) -3Ln5=2+3(Ln3+Ln5)=2+3Ln15. Найдём площадь треугольника прямоугольного с катетами 2и 2 площадь будет 2*2\2=2 Ну а теперь площадь всей фигуры 4+3Ln15
2.Найдите наибольшее значение функции y=-x^2-6x+5 на промежутке [-4,-2]
y=-x^2-6x+5 y`=-2x-6 y`=0 при х=-3 - принадлежит [-4,-2] у(-4)=-(-4)^2-6*(-4)+5=13 у(-3)=-(-3)^2-6*(-3)+5=14 у(-2)=-(-2)^2-6*(-2)+5=13
наибольшее значение функции на промежутке [-4,-2] max(y)=14
3. y=корень(3) - горизонтальная прямая касательная к прямой в любой точке совпадает с прямой к оси абсцисс под углом 30 градусов касательная к прямой у=корень(3) быть не может
4. y=(x-1)^3-3(x-1) =(x-1)((x-1)^2-3)=(x-1-корень(3))*(x-1)*(x-1+корень(3)) кривая третей степени, симметричная относительно точки x=1; у=0 имеет локальный минимум и локальный максимум имеет три нуля функции имеет одну точку перегиба расчетов не привожу так как это уже 4 задание в вопросе
график во вложении
3*. - для измененнного условия y=корень(3x) y`=1/2*корень(3/x) y`=tg(pi/6)=корень(3)/3=1/2*корень(3/x)