М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Указать верное утверждение. а. любая арифметическая прогрессия может быть задана формулой вида : an = kn + b б. разность арифметической прогрессии (d) равна разности предыдущего и последующего членов: d = an - an+1 в. каждый член арифметической прогрессии равен среднему арифметическому двух последующих членов прогрессии

👇
Ответ:
ponomariov17p01k9s
ponomariov17p01k9s
01.07.2020

A) Верно, так как это теорема о задание арифметической прогрессии формулой an = kn + b, где k, b - некоторые числа.

Теорема. Любая арифметическая прогрессия (аn) может быть задана формулой an = kn + b, где k и b - некоторые числа; также имеет место обратное утверждение, если последовательность (аn) задана формулой an = kn + b, где k и b - некоторые числа, то эта последовательность является арифметической прогрессией.

Б) Не верно. Верна формула d=a_{n+1}-a_n

В) Неверно. Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому двух соседних:

                      a_n=\dfrac{a_{n-1}+a_{n+1}}{2}

4,4(50 оценок)
Открыть все ответы
Ответ:
svkalin
svkalin
01.07.2020

если b[1], b[2], b[3], .. - данная бесконечная убывающая геомметрическая прогрессия с знаменателем q, то

последовательность составленная из квадратов членов данной, тоже бессконечная убывающая c первым членом b[1] и знаменателем q^2

 

используя формулу суммы бесконечной убывающей прогрессии

 

b[1]/(1-q)=4

b[1]^2/(1-q^2)=48

 

откуда разделив соотвественно левые и правые части равенств, и используя формулу разности квадратов

b[1]^2/(1-q^2) :b[1]/(1-q)=48/4

b[1]/(1+q)=12

откуда

b[1]=12(1+q)=4(1-q)

 

12+12q=4-4q

12q+4q=4-12

16q=-8

q=-1/2

 

b[1]=4*(1-(-1/2))=4+2=6

4,6(29 оценок)
Ответ:
Эээээээ11
Эээээээ11
01.07.2020
 - квадратичная функция. График парабола =>
Сначала находим вершину. Пусть А(m;n) - вершина параболы => 
m=-b/2a=(-4)/(-4)=1 => n=-2+4+6=8=> вершина параболы находится в точке с координатами: (1;8). Остальные точки находим подставляя в функцию вместо х: 2 и 0, 3 и -1, 4 и -2 и т.д.
1)При х=-2 у=-10; при х=0 у=6; при х=3 у=0
2)При у=10 х=-2; при у=6 х=0; при у=0 х=3
3)у наиб=n (в вершине) =8
4) Возрастает (большему значению х соответствует большее
 значение у) на промежутке (-∞;1]; 
убывает (большему значению х соответствует меньшее
 значение у) на промежутке [1;+∞)
5)Аргумент - х. При у=0 х=-1 и 3=>
y>0 при х∈(-1;3)
y<0 при x∈(-∞;-1)U(3;+∞)
4,6(30 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ