М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
катялисицина
катялисицина
16.06.2022 22:46 •  Алгебра

Найдите значение выражения: (xy+y^2/54x)*(9x/x+y) при x= 0,5 y= -6,9

👇
Ответ:
asikpozitiv3
asikpozitiv3
16.06.2022
(у(х+у)/54х)*(9х/х+у)=у/6   (54х и 9х сократилось; х+у сократилось)
-6.9/6=-1.15
4,4(35 оценок)
Открыть все ответы
Ответ:
Пакмен007
Пакмен007
16.06.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Ответ:
yuraseven77
yuraseven77
16.06.2022

Если ещё не изучено понятие производной, то решение может быть таким:

1. -2;

2. 3.

Объяснение:

1.Sn=6n-n^2

a1 = S1 = 6•1 - 1^2 = 5;

a1+a2 = S2 = 6•2 - 2^2 = 12 - 4 = 8;

a2 = S2 - S1 = 8 - 5 = 3.

Найдём d:

d = a2 - a3 = 3 - 5 = -2.

2. Sn=6n-n^2

Рассмотрим квадратичную функцию

у = 6х - х^2.

Графиком функции является парабола

у = - х^2 + 6х

Ветви параболы направлены вниз, своего наибольшего значения функция достигает в вершине параболы. Найдём её координаты:

х вершины = -b/(2a) = -6/(-2) = 3.

y вершины = - 3^2 +6•3 = -9+18 = 9.

Наибольшего значения 9 функция у = - х^2 + 6х достигает при х = 3.

Так как 3 - натуральное число, то и наша функция Sn=6n-n^2, определённая только для натуральных n, достигает наибольшего значения 9 при n = 3.

Необходимо взять три первых члена прогрессии, чтобы их сумма была наибольшей и равной 9.

ответить на второй вопрос можно и по-прежнему другому:

Sn=6n-n^2

- n^2 + 6n = - (n^2 - 6n) = - (n^2 -2•n•3 + 9 - 9) = - ((n-3)^2 -9) = - (n-3)^2 + 9.

Так как слагаемое 9 постоянно, a - (n-3)^2 неположительно для любого n, то наибольшей сумма будет тогда, когда наибольшим будет первое слагаемое, т.е. когда - (n-3)^2 = 0, при n = 3.

В этом случае Sn = - (n-3)^2 + 9 = 0 + 9 = 9.

4,8(48 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ