1.Это во вложении.
2.Углом наз. часть плоскости ограниченная двумя лучами, имеющими общее начало.
Сами лучи называются сторонами угла, а общая точка, из которой лучи выходят, наз. вершиной угла.
3.Угол равный двум прямым углам, т.е. 180 градусам. Посмотрите рис 1 во вложении – это развернутый угол.
4.Фигуры, которые совпадают при наложении называются РАВНЫМИ
5.Отрезок - наикратчайшее расстояние между двумя точками. Наложением, если совпадают – равны, если нет меньше тот, который полностью вмещается в другой отрезок. Можно просто измерить длины отрезков и сравнить их.
6.Середина отрезка - это точка, которая делит данный отрезок на два равных отрезка.
7.Нужно наложить один на другой, так что бы совместились вершины и стороны.
8.Проходящий через вершину угла, находящийся между сторонами и делящий его пополам.
9.Чтобы найти длину отрезка AB надо сложить длины отрезков AC и CB.
10.Линейка, рулетка, теодолит, лазерный дальномеррадиолокационный дальномер и т.д. и т.п.
11.Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Если разделить его лучами на 180 разных углов, то мы получим величину угла в 1 градус. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
12.Градусная мера угла равна сумме градусных мер его частей
13. Острый - градусная мера меньше 90 градусов, прямой угол – 90 градусов, тупой больше 90 градусов.
14.Смежными называются углы, имеющие общую вершину и общую сторону, а их вторая сторона – продолжение друг друга.
15.При пересечении двух прямых образуются две пары вертикальных углов. Вертикальные углы равны.
16. Прямые при пересечении которых образуется угол градусная мера которого равна 90 градусов
17. Два перпендикуляра к одной прямой между собой параллельны, а параллельные прямые не пересекаются.
18. Эккер, буссоль, теодолит (электронный тахеометр), рулетка. (В последнем случае используется теорема Пифагора).
1. а) - 4, 5
б) - 1, 2, 4, 5
в) - таких функций нет
2. А - 2
B - 3
C - 1
D - нет подходящего рисунка
3. а) - любые числа
б) x не равно 8, значит принадлежит (-бесконечность;8)U(8;+бесконечность)
4. y = 2.5x-1
т.к. функция линейная, нам нужно найти значение лишь при минимуме и максимуме отрезка -4≤x≤8
y = -4*2.5-1=-11
y=2.5*8-1=19
значит область значений принадлежит [-11;19]
5. точка пересечения: 1;5
Объяснение:
1) || - параллельнсть
l - переменная
k - коэффициент
функции ||, если они не могут быть равны, т.е. у них нет точек пересечения, согласно определению параллельности (|| те прямые, которые не имеют точек пересечения).
а если точка пересечения есть, тогда функции пересекаются, т.е. они оба пересекают определенную координату, следовательно они должны быть равны между собой
линейные функции :
тогда можно прийти к выводу, что если k1=k2, функции параллельны, ибо:
y=kx+l если представить как равно значение:
kx+l=kx+l
l=l, т.е. если k1=k2, l1=l2, проще говоря, не существует какой-либо функции, которая пересекает y=kx+l, если их k равны.
например, y=5x+2
5x+2=5x+2
2=2, если вместо 2 мы подставим любое другое число, равенство станет неверным.
из этого можно сделать вывод, что если k1 не равно k2, тогда функции пересекаются, ибо:
y=k1x + l и y=k2x+l
k1x + l = k2x+ l
l мы сможем сократить только при условии, что они равны, но тогда мы получим все равно верное равенство, просто тогда точкой пересечения будет (0; l), т.е. при x=0 функции станут равными, ибо при умножении k на 0 будет 0, останется только l=l
если же l1 не равно l2, тогда у нас выйдет уравнение с 2 переменными, а значит оно имеет бесконечное множество решений при любом х (если, конечно, x имеет смысл и нет всяких делений на 0 и т.д.), следовательно первая функция при любых значениях k и l будет иметь точку пересечения со второй функцией, если k второй функции не равен k первой функции
2) чтобы установить соответствие, нужно найти минимум 2 значения линейной функции и сравнить результат с графиком.
но чаще всего на рисунках графики будут сильно друг от друга отличаться, поэтому достаточно найти x = 0 и сравнить результат с каждым из рисунков
5) чтобы нарисовать график линейной функции, достаточно найти 2 ее значения (желательно брать максимально простые числа, например, при х 0 и 1), затем проводим линию между этими двумя точками, получив их точку пересечения.
в данном задании можно уравнения представить как линейные функции.
тогда их точка пересечения будет ответом.
ответ: 54.
Пошаговое объяснение:
q — знаменатель геометрической прогрессии; b₁ — первый член.