1) (sin(2t))/(1+cos(2t)) *((сost)/(1+cos(t)) =
(((2sint)*(cost))/(2cos²t))*(cost/(2cos²(t/2)))=(tgt)*cost/(2cos²(t/2))=
(sint)/(2cos²(t/2))=(2sin(t/2))*cos(t/2)/(2cos²(t/2))=tg(t/2)
Bоспользовался дважды формулой (1+cosα)=2cos²α ; формулой синуса двойного аргумента sin2α=2(sinα)*(cosα) и tgα=sinα/cosα.
2) Докажем второе тождество, используя те же формулы.
((sin(2t))/(1+cos(2t)))*(cost/(1+cost))*(cos(t/2))/(1+cos(t/2))=tg(t/4)
1) упростим ((sin(2t))/(1+cos(2t)))=(2sint)(сost)/(2cos²t)=sint/(cost)=tgt
2) умножим (tgt)*(cost/(1+cost))=(sint)/(2cos²(t/2))=
(2sin(t/2))*(cos(t/2))/(2cos²(t/2))=tg(t/2)
3) умножим (tg(t/2))*((cos(t/2))/(1+cos(t/2))=sin(t/2)/(2cos²(t/4)=
(2sin(t/4)*(cos(t/4))/(2cos²(t/4))=tg(t/4)
Требуемое доказано.
Если обозначить С(m,n) - число сочетаний n из m, то есть
С(m,n) = m!/(n!*(m-n)!)
то общее число ВАРИАНТОВ вынуть 5 билетов из 100 равно C(100,5)
При этом, если известно, что в этих 5 билетах ровно к выгрышных и (5 - к) невыгрышных, то число разных вариантов сильно сокращается, и равно числу вариантов вынуть к из 20, умножить на число вариантов выбрать 5 - к из 80 (а почему умножить? на каждый вариант из C(20, к) сочетаний первой группы приходится С(80, 5 - к) второй..)
Поэтому вероятность попасть в благоприятный исход равна
С(20, к)*С(80, 5 - к)/C(100, 5);
1. в первом случае к = 5, 5 - к = 0, то есть
р = С(20,5)/С(100,5)
2. событие дополнительно событию, когда достали 5 невыгрышных билетов, то есть
р = 1 - С(80,5)/С(100,5)
3. р = С(20, 2)*С(80, 3)/C(100, 5);
2) В условии в третьей и четвёртой дроби исправлены опечатки
=======================================
Использованы формулы двойного аргумента