М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ВаняСуліма
ВаняСуліма
02.04.2023 18:41 •  Алгебра

Решить на координатной прямой отмечены числа а и b. какое из следующих утверждений неверно? в ответе укажите номер правильного варианта. 1) а+b< 0 2) -4< a-1< 0 3) a2 8 < 0 4) -b< 0 известно, что a< b< 0 выберите наименьшее из чисел. 1)a-1 2)b-2 3)ab 4)-b

👇
Ответ:
     Рисунок к заданию во вложении.
Дано: -3<a<-2
          -1<b<0
1) а+b< 0 - верно: (-)+(-)=(-)
2) -4< a-1< 0 - верно: -3<a => -4<a-1; a<-2 => a-1<-3, значит a<0.
3) a²b < 0 - верно: (-)²=(+), (+)*(-)=(-)
4) -b< 0 - неверно: -(-)=(-)*(-)=(+) => -b>0
     Выбрать наименьшее из чисел:
1) a-1 - a<-2 => a-1<-3
2) b-2 - b<0 => b-2<-2
3) ab - (-)*(-)=(+) => произведение ab - это положительное число
4) -b -  -(-)=(-)*(-)=(+) =Ю=> -b - положительное число.
     Наименьшее из чисел - это а-1, которое меньше -3.
Решить на координатной прямой отмечены числа а и b. какое из следующих утверждений неверно? в ответе
4,5(38 оценок)
Открыть все ответы
Ответ:
ТаяDuda2133
ТаяDuda2133
02.04.2023
\frac{log_{21+4x-x^2}(7-x)}{log_{x+3}(21+4x-x^2)} \ \textless \ \frac{1}{4}
ОДЗ: 21 + 4x - x² > 0
          21 + 4x - x² ≠ 1
          7 - x > 0
          x + 3 > 0
          x + 3 ≠ 1

21 + 4x - x² > 0
x² - 4x - 21 < 0

x² - 4x - 21 = 0
По теореме Виета: x₁ = -3, x₂ = 7.

x² - 4x - 21 < 0
x ∈ (-3; 7)

21 + 4x - x² ≠ 1
x² - 4x - 20 ≠ 0
D = 16 + 80 = 96
x_1 \neq \frac{4- \sqrt{96}}{2} = 2 -\sqrt{24} = 2(1-\sqrt{6}) \\ x_2 \neq \frac{4+\sqrt{96}}{2} = 2+\sqrt{24}=2(1+\sqrt{6})

7 - x > 0
x < 7

x + 3 > 0
x > -3

x + 3 ≠ 1
x ≠ -2

Окончательно, ОДЗ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

Решаем само неравенство:
\frac{log_{-(x+3)(x-7)}(7-x)}{log_{x+3}(-(x+3)(x-7))} \ \textless \ \frac{1}{4} \\ \frac{log_{(x+3)(7-x)}(7-x)}{log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{log_{7-x}((x+3)(7-x))*log_{x+3}((x+3)(7-x))} \ \textless \ \frac{1}{4} \\ \frac{1}{(log_{7-x}(x+3)+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4}
\frac{1}{( \frac{1}{ log_{x+3}(7-x)}+1)*(1+ log_{x+3}(7-x))} \ \textless \ \frac{1}{4} \\ \frac{log_{x+3}(7-x)}{(1+ log_{x+3}(7-x))^2} \ \textless \ \frac{1}{4}
Замена:
t=log_{x+3}(7-x) \\ \frac{t}{(1+t)^2} \ \textless \ \frac{1}{4} \\ \frac{4t-(1+t)^2}{4(1+t)^2} \ \textless \ 0
\frac{4t-1-2t-t^2}{4(1+t)^2} \ \textless \ 0 \\ \frac{-(1-t)^2}{4(1+t)^2} \ \textless \ 0
\frac{(1-t)^2}{4(1+t)^2}\ \textgreater \ 0
t ≠ 1
t ≠ -1
Делаем обратную замену:
log_{x+3}(7-x) \neq 1 \\ log_{x+3}(7-x) \neq -1

7-x \neq x+3\\ 7-x \neq \frac{1}{x+3}

2x \neq 4\\ \frac{(7-x)(x+3)-1}{x+3} \neq 0

x \neq 2\\ \frac{20+4x-x^2}{x+3} \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x+3 \neq 0

x \neq 2\\ x^2-4x-20 \neq 0 \\ x\neq -3

Учитывая ОДЗ, окончательный ответ: x ∈ (-3; 2(1-\sqrt{6})) U (2(1-\sqrt{6}); -2) U (-2; 2) U (2; 2(1+\sqrt{6})) U (2(1+\sqrt{6}); 7).

 
4,4(6 оценок)
Ответ:
Соня13377
Соня13377
02.04.2023
1-весь заказ
1/х - работа за час 1-й компании
1/(х+9) - работа за час второй компании
1/х+1/(х+9) = 1\20 - ПЕРЕНЕСЕМ 1\20 В ЛЕВУЮ ЧАСТЬ
1/х+1/(х+9) - 1\20 = 0
ПРИВЕДЕМ ВСЕ ОДНОЧЛЕНЫ К ОБЩЕМУ ЗНАМЕНАТЕЛЮ
1/х + 1/(х+9) - 1\20 / 20*х(х+9) = 0 домножим обе части на знаменатель,т.е. избавимся от него.
Получим это уравнение
20х+180+20х-х²-9х = 0
-х²+31х+180= 0
D = 961+720 = 1681 (41)
x1 = (-31+41):(-2)  <0 - не подходит по смыслу.
х2 = (-31-41):(-2) = 36 (часов надо 1 бригаде)
36+9 = 45
ответ за 45 часов выполнит работу 2 бригада.
4,8(95 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ