Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
1) Найти уравнение стороны ВС, её нормальный вектор и угловой коэффициент. , это уравнение в каноническом виде. Знаменатели в этом уравнении - это координаты направляющего вектора: направляющий вектор . Чтобы найти угловой коэффициент, надо уравнение из канонического вида преобразовать в уравнение с коэффициентом: -6х + 42 = -8у - 48, 6х - 8у - 90 = 0 или, сократив на 2: 3х - 4у - 45 = 0 это общий вид уравнения. Теперь выразим относительно у: у = (3/4)х - (45/4) это уравнение с коэффициентом . Угловой коэффициент уравнения стороны равен ВС 3/4. Его можно определить по координатам точек: Квс = (Ус-Ув) / (Хс-Хв). Если прямая задана общим уравнением в прямоугольной системе координат, то вектор является вектором нормали данной прямой. Нормальный вектор (3;-4).
2) Найти точку пересечения медианы, опущенной из вершины А, и высоты, опущенной из вершины В. Для этого надо найти уравнения этих прямых и решить полученную систему. Находим координаты точки М (основание медианы АМ) как середину стороны ВС: М((7-1)/2=3; (-6-12)/2=-9. Отсюда находим уравнение медианы АМ: Находим уравнение высоты из точки В(7;-6) как перпендикуляра (нормали) к стороне АС.
Уравнение
Или в общем виде
Нормальный вектор стороны АС , а для высоты ВН он будет направляющим:
Уравнение высоты
Или в общем виде: -х + 7 = 7у + 42,
х + 7у + 35 = 0.
3) Уравнение прямой, проходящей через точку А параллельно стороне ВС имеет вид 3х - 4у - С = 0, так как уравнение ВС: 3х - 4у - 45 = 0. Подставим координаты точки А: 3*1 - 4*2 - С = 0, отсюда С = 3-8 = -5. Тогда искомое уравнение 3х - 4у + 5 = 0.
x^4-4x^2=0
х1=0; х2=2; х3=-2;
Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0
f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0
Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2)
теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум
-2^0.5 0 2^0.5
---*---о*о*---о*--
-2 -1 1 2
x=0 => y= 0
x=-2^0.5 => y= -4
x=2^0.5 => y= -4
x=-2 => y= 0
x=-1 => y=-3
x=1 => y=-3
x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум.
Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум.
Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено
Точки пересечения с осью Х
х1=0; х2=2; х3=-2;
Минимум
(-2^0.5;-4) и (2^0.5;-4)
Максимум
(0;0)