М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
152003152003
152003152003
15.06.2021 11:37 •  Алгебра

Найдите производные функций f(x)=x^2+x^3 объясните и желательно какая формула здесь нужна?

👇
Ответ:
knyzeva2804
knyzeva2804
15.06.2021
F(x)=x²+x³
а) Здесь используются две формулы производных:
    1) производная суммы: (f(x)+g(x))' = f ' (x) + g' (x);
    2) производная степени: (х^(n))' =n x^(n-1)

б) (х²+х³)' =(x²)' + (x³)' = 2x²⁻¹ + 3x³⁻¹ =2x+3x² 
4,4(77 оценок)
Открыть все ответы
Ответ:
elizabetfox1222
elizabetfox1222
15.06.2021

НЕТ НЕ ВЕРНО

|a + b| ≤ |a| + |b| это ВЕРНО

Существует 4 варианта знаков + и - для чисел a и b

1 вариант

Если a > 0 и b > 0

их модули совпадают с их значениями: |a| = a, |b| = b

Из этого следует, что |a + b| = |a| + |b|

2 вариант

Если a < 0 и b > 0

выражение |a + b| можно записать как |b – a|

А выражение  |a| + |b| равно сумме абсолютных значений a и b, что больше, чем |b – a|

3 вариант (похож на 2 вариант)

Если a > 0 и b < 0  |a + b|

выражение |a + b|  принимает вид |a – b|

А выражение  |a| + |b| равно сумме абсолютных значений a и b что также больше чем |a - b|

Поэтому |a + b| < |a| + |b|

4 вариант

Если a < 0 и b < 0

тогда |a + b| = |–a – b| = |-(a + b)|

Но в варианте 1 доказано, что |a + b| = |a| + |b|, следовательно и |–a – b| = |a| + |b|

значит  |a + b| ≤ |a| + |b|  в зависимости от знаков a и b

а вот |ab| = |a|*|b|

4,8(75 оценок)
Ответ:
kharina0309
kharina0309
15.06.2021
 1а)  Каждая монета может упасть либо орлом (О)  либо решкой (Р), то есть две возможности.Монет всего 3.Тогда число возможных событий для 3-х монет равно 2^3=8.Вот варианты:
 (РРР) (РРО) (РОР) (ОРР) (ООР) (ОРО) (РОО) (ООО)
Два раза орёл и один раз решка выпадает в трёх случаях (ООР)  (ОРО) (РОО).
Вероятность равна 3/8.
1б) Если монету бросают дважды, то возможны случаи
 (ОО) (ОР) (РО) (РР)
 Вероятность ХОТЯ бы один раз выпасть орлу равна 3/4.
 2) Двойка выпадает с вероятностью 1/6 и пятёрка выпадает с вероятностью 1/6 .
Вероятность того, что выпадет или 2 или 5 равна 1/6+1/6=2/6=1/3
б)Чисел, меньших 3, на кубике всего два.Чисел,не больших 3 (меньше или равно 3),на кубике всего 3.Вероятность события равна
 2/6*3/6=6/36=1/6
4,8(73 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ