-2
Объяснение:
система имеет бесконечно много решений если мы имеем тождество, не зависящее от переменных:
для этого нужно, чтобы коэфф. при х, у и правая часть совпадали с точностью до множителя. сейчас поясню:
в первом уравнении при х стоит 4, во втором 20, 20 = 4*5
в правой части первого уравнения стоит 3, во втором 15, 15 = 3*5
значит -а*5=10 => а=-2
при этом а, если мы домножим первое уравнение на 5 и вычтем из 2, получим 0 = 0 - это тождество верное при любых х и у, то есть решений бесконечно много
ответ:x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}
Объяснение:
Уравнения вида, которое вы нам предоставили — очень часто вызывает различные затруднение у учеников и студентов тоже. Но это, на самом деле, не так страшно и не так сложно, как может показаться на первый взгляд. Прежде, чем разобраться с Вашей уравнением cos x = 1/2, нужно подумать, в каком виде можно представить данное уравнение, чтоб понять как его решать.
Вот так будет выглядеть Ваше условие на математическом языке:
\[cos x = \frac{1}{2}\]
Да, я понимаю, что это Вам особо не так как вид особо не изменился. Но чтоб решать такие уравнения, то надо использовать известное правило, которое выглядит таким образом:
\[cos x = a\]
\[x = \pm arccos \mathbf{a} + 2\pi n, n \in \mathbb{Z}\]
Как только мы разобрались с общим решением, то теперь можем преступить к решению именно Вашего уравнения:
\[cos x = \frac{1}{2}\\]
\[x = \pm arccos \frac{1}{2} + 2\pi n, n \in \mathbb{Z}\]
Значение arccos \frac{1}{2} мы найдём при таблицы. И исходя из этого получаем, что arccos \frac{1}{2} = \frac{\pi}{3}
Так как с основным разобрались, то теперь можем и решить до конца Ваше уравнение:
\[cos x = \frac{1}{2}\]
\[x = \pm \frac{\pi}{3} + 2\pi n, n \in \mathbb{Z}\]
А уже, учитывая всё выше написанное, приведём решение нашего уравнения к нормальному виду и получим такое:
\[x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}\]
ответ: x = \pm \frac{7 \pi n}{3}, n \in \mathbb{Z}
9х⁴+66х³-60х²-44х+4 = 0.
Корни уравнения n-ой степени могут быть найдены с любой наперед заданной точностью при численных методов. В данном случае применено решение уравнения 4 степени одним из таких методов, а именно: методом Лягерра (Laguerre).
Изначально задаётся требуемую точность нахождения корней и максимальное количество итераций, которое предполагается при этом затратить.
Требуемая точность нахождения корней: 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10 1e-11 1e-12 1e-13 1e-14 . Максимальное число итераций: 30 50 100 150 200 .
ответ:
Корни полинома
9x4 + 66x3 − 60x2 − 44x + 4 = 0
равны:
x1 ≈ −8.08248290463863P(x1) ≈ 0iter = 1
x2 ≈ −0.548583770354863P(x2) ≈ 0iter = 4
x3 ≈ 0.0824829046386294P(x3) ≈ 0iter = 3
x4 ≈ 1.21525043702153P(x4) ≈ 0iter = 1
В результате получаем 4 корня:
х₁ = -8,08248
х₂ = -0,548584
х₃ = 0,0824829
х₄ = 1,21525.