Набирая номер телефона абонент забыл 3 последние цифры и набрал их наугад. найти вероятность того что набраны нужные цифры если известно что в номере не было цифры 2.
Примем вклад за 1. Если вклад увеличится на 10%, то он составит по отношению к первоначальному: 100% + 10% = 110% 110% = 1,1 Значит, размер вклада должен стать больше 1,1.
При увеличении вклада на 3%, к концу года вклад составит: 100% + 3% = 103% 103% = 1,03
1 * 1,03 = 1,03 - размер вклада через 1 год. 1,03 * 1,03 = 1,0609 - размер вклада через два года. 1,0609 * 1,03 ≈ 1,093 - размер вклада через три года. 1,093 * 1,03 ≈ 1,126 - размер вклада через четыре года. 1,126 > 1.1 ответ: через четыре года вклад вырастет более чем на 10%.
1) F`(x)=3x²-6x-9 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²-6x-9=0 3·(x²-2x-3)=0 x²-2x-3=0 D=16 x₁=(2-4)/2=-1 x₂=(2+4)/2=3 - точки возможных экстремумов Обе точки принадлежат указанному промежутку Не проверяя какая из них точка максимума, какая точка минимума, просто находим F(-4)=(-4)³-3·(-4)²-9·(-4)+35=-64-48+36+35=-41 наименьшее F(-1)=(-1)³-3·(-1)²-9·(-1)+35=-1-3+9+35=40 - наибольшее F(3)=(3)³-3·(3)²-9·(3)+35=8
F(4)=(4)³-3·(4)²-9·(4)+35=64-48-36+35=15
выбираем из них наибольшее и наименьшее
2) F`(x)=3x²+18x-24 Находим точки, в которых производная обращается в нуль. F`(x)=0 3x²+18x+24=0 3·(x²+6x+8)=0 x²+6x+8=0 D=36-4·8=36-32=4 x₁=(-6-2)/2=-4 x₂=(-6+2)/2=-2 - точки возможных экстремумов Обе точки не принадлежат указанному промежутку
ответ:Общее количество вариантов набрать три цифры из 10 будет равно числу размещений из 10 по 3:
A = 10! / (10 - 3)! = 10 · 9 · 8 = 720;
2) Существует только один набрать правильно 3 цифры. Тогда, по классической теории, вероятность того, что цифры набраны правильно равна:
Р(А) = 1/720 = 0,0014.
ответ: 0,0014.
Объяснение: