Парабола. Направление "ветвей" зависит от коэффициента a, если он > 0, то ветви направлены вверх, если <0 - вниз. Приравняв функцию к нулю, с дискриминанта и формул корней квадратного уравнения найдем точки пересечения с осью абсцисс (Ox) Формула вершины параболы (координата по Х) -b\2a. Найдя координату по х, подставим ее в исходную функцию, получим координату по Y. (там есть отдельная формула, но кому она нужна) Для дополнительной точности можем найти значения функции в окрестностях корней, но это уже на любителя. В итоге получим что-то такое:
P = m/n. Пространство исходов упорядоченные пары чисел от 1 до 6, например: (1;6); (2;3), (6;5) и т.п. Всего таких исходов n = 6*6, A) m = 5*5. P = (5*5)/(6*6) = 25/36 Б) m = 1. Лишь одна пара (6;6) удовлетворяет условию. P = 1/(6*6) = 1/36. В) Удовлетворяет условию следующие исходы: (6,4),(4,6),(5,5), (6,5), (5,6), (6,6). m = 6. P = 6/(6*6) = 1/6. Г) Искомому значению удовлетворяет событие, противоположное предыдущему (В), поэтому ответом будет P = 1 - (1/6) = 5/6. Пояснение к Г) : События В) и Г) взаимно противоположные, т.е. они не пересекаются и в объединении дают все пространство исходов, так что P_в + P_г = 1.
2)(95-5)^2=90^2=8100