1) sin 3x - sin 5x > 0 По формуле разности синусов 2sin(-x)*cos(4x) > 0 -2sin x*cos(4x) > 0 Делим на -2, при этом знак неравенства меняется. sin x*cos(4x) < 0 Два варианта. Множители должны иметь разные знаки. a) { sin x < 0 { cos(4x) > 0 Решаем неравенства { x ∈ (-pi+2pi*k; 2pi*k) { 4x ∈ (-pi/2+2pi*k; pi/2+2pi*k); x ∈ (-pi/8+pi/2*k; pi/8+pi/2*k) Решение 2 неравенства я показал на рисунке. Это жирные дуги. Пересечение неравенств - это нижняя часть круга, где sin x < 0 x ∈ (-pi+2pi*k; -7pi/8+2pi*k) U (-5pi/8+2pi*k; -3pi/8+2pi*k) U (-pi/8+2pi*k; 2pi*k)
б) { sin x > 0 { cos(4x) < 0 Решаем неравенства { x ∈ (2pi*k; pi+2pi*k) { 4x ∈ (pi/2+2pi*k; 3pi/2+2pi*k); x ∈ (pi/8+pi/2*k; 3pi/8+pi/2*k) Решение 2 неравенства - это нежирные дуги на том же рисунке. Пересечение неравенств - это верхняя часть круга, где sin x > 0 x ∈ (pi/8+2pi*k; 3pi/8+2pi*k) U (5pi/8+2pi*k; 7pi/8+2pi*k)
У меня получилось 4 таких числа - 1236, 1248, 1296 и 1326. Это навскидку, может и еще есть. Очевидно, первая цифра 1. Если все цифры различны, то вторая 2 или 3. Если вторая цифра 2, то третья не меньше 3, а последняя четная. Если третья 3, то число делится на 2 и 3, то есть на 6. Последняя 6. 1236 делится на 2,3 и 6. Если третья 4, то последняя 8. 1248 делится на 2, 4 и 8. Третья не может быть 5,6,7,и 8, по разным причинам. Если третья 9, то последняя 6, 1296 делится на 2, 9 и 6. Если вторая 3, то получается 1326 - четное и делится на 6.
4-2х-12+3х+12=0
4+х=0
х= -4
2)5(х+6)=12+2(х-3)
5х+30-12-2х+6=0
3х+24=0
3х=-24
х=-8