М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ulyanae17
ulyanae17
14.03.2020 04:47 •  Алгебра

8! кто может ! вынесите множитель из-под знака корня. кводратный корень- к(так как значок я ствить не умею, заменяю буквой) /-дробь а теперь сами числа: к m(в третий степени)/n(в третий степени ) к х(в третий степени)/8у(втретий степени) к 81с(в шестой степени)/ а(в третий степени) к 32с(в седьмой степени)/9б(в шестой степени)

👇
Ответ:
dicsi1
dicsi1
14.03.2020

\sqrt{\frac{m^3}{n^3}}=\sqrt{\frac{m^2\cdot m}{n^2\cdot n}}=\frac{m}{n}\sqrt{\frac{m}{n}}, \\ \sqrt{\frac{x^3}{8y^3}}=\sqrt{\frac{x^2\cdot x}{2^2\cdot2\cdot y^2\cdot y}}=\frac{x}{2y}\sqrt{\frac{x}{2y}}, \\ \sqrt{\frac{81c^6}{a^3}}=\sqrt{\frac{9^2\cdot(c^3)^2}{a^2\cdot a}}=\frac{9c^3}{a}\sqrt{\frac{1}{a}}, \\ \sqrt{\frac{32c^7}{9b^6}}=\sqrt{\frac{4^2\cdot2\cdot(c^3)^2\cdot c}{3^2\cdot(b^3)^2}}=\frac{4c^3}{3b^3}\sqrt{2c}.

4,6(89 оценок)
Открыть все ответы
Ответ:
Bikoshm
Bikoshm
14.03.2020

1) Найдем нулю нашей функции. Для чего разложим на множители формулу, которой она задана, с введения новых вс членов.

    f(x)=\frac{1}{3}(x^{3}-4x^{2}-4x^{2}+4x+x+16-2)==\frac{1}{3}((x^{3}-4x^{2}+4x)-(4x^{2}-16)+(x-2))==\frac{1}{3}[x(x-2)^{2}-4(x-2)(x+2)+(x-2)]==\frac{1}{3}(x-2)(x(x-2)-4(x+2)+1)=\frac{1}{3}(x-2)(x^{2}-6x-7) 

 Из f(x)=0 следует:

    а)  x-2=0, отсюда x_{1}=2 - нуль функции

    б) x^{2}-6x-7=0, D=(-6)^{2}-4*(-7)=36+28=64, отсюда

   x_{2}=\frac{6+8}{2}=7, x_{3}=\frac{6-8}{2}=-1 - нули функции

 

Итак, функция f(x) обращается в нуль в точках x_{1}, x_{2} и x_{3} 

 

2) Найдем возможные точки экстремума нашей функции. Для чего найдем производную функции f(x):

 f^{'}(x)=\frac{1}{3}(x^{3}-8x^{2}+5x+14)^{'}_{x}=\frac{1}{3}(3x^{2}-16x+5)-----(1) 

  Разложим квадратный трехчлен, стоящий в правой части (1), на целые множители. Для чего найдем дискриминант этого квадратного трехчлена:     

   D=256-12*5=256-60=196=14^{2}, отсюда найдем корни:

     x^{'}_{1}=\frac{16+14}{6}=5

    x^{'}_{2}=\frac{16-14}{6}=\frac{1}{3}  ---------(2)

Тогда с (2) выражение (1) примет вид метода интервалов найдем промежутки, на которых производная функции f(x) принимает положительные и отрицательные значения:

   

а) f^{'}(x)0  при x принадлежащем объединению промежутков

  (-бесконечности; 1/3)U(5; +бесконечности ) 

б) f^{'}(x)<0  при x принадлежащем промежутку (1/3; 5)

 

Известно, что промежутки, на которых производная функции положительна, являются промежутками возрастания функции!

На промежутках, где f^{'}(x)<0, функция убывает!       

  

Поскольку при переходе через точку x=1/3 производная меняет знак с плюса на минус, то эта точка - точка максимума

 Поскольку при переходе через точку x=5 производная меняет знак с минуса на плюс, то эта точка - точка минимума. Итак,

      x_{max}=\frac{1}{3} 

       x_{min}=5 

      

           

 

4,7(1 оценок)
Ответ:
Сенси
Сенси
14.03.2020
(x+y)/xy=7/13
13*(x+y)=7*xy
13*x+13*y-7*x*y=0
x*(13-7y) +13*y=0
x*(13-7y) -2*(13-7y)-y+26=0
(x-2)*(13-7y)-y=-26
(7x-14)*(13-7y)-7*y=-182
(7x-14)*(13-7*y)+(13-7*y)=-169
(7x-13)*(13-7y)=-169
(7x-13)*(7y-13)=169
Тк  каждая из скобок   целое число тк x и y-натуральные.
то каждая из скобок делитель  числа 169=13^2  тут  возможны разложения:
13*13   -13*-13      169*1    -169*-1 и  симметричные им варианты  соответственно.
1) 7x-13=13 
7x=26   невозможно тк 26 не  делится на 7.
2) 7x-13=-13 x=0 (не  подходит тк 0  не  натуральное число)
3) 7x-13=169
 7x=182
x=26
7y-13=1
7y=14
y=2
Cимметричная пара: x=2 y=26
4) 7x-13=-169
  7x=-156  
(не  делится на 7) Другие варианты симметричны  тк  скобки похожи.
То  есть там тоже не будет решений.
ответ:(2,26) ;(26,2)  
4,6(87 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ