В обоих случаях рассматриваем прямоугольный треугольник с одним из углов
В первом случае примем прилежащий к углу катет за 3, а гипотенузу - за 5. Тогда неизвестный катет вычислим по т. Пифагора как
Синус угла
есть отношение противолежащего катета к гипотенузе, т.е. 4/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.
Во втором случае примем катет, лежащий против за 4, а гипотенузу - за 5. Неизвестный катет, по теореме Пифагора, будет равен 3. Косинусом
есть отношение прилежащего катета к гипотенузе, т.е. 3/5. Тангенсом - отношение противолежащего катета к прилежащему, т.е. 4/3. Котангенсом - отношение прилежащего катета к противолежащему, т.е. 3/4.
8
Объяснение:
Сложим два равенства, получим уравнение:
Раскроем скобки справа, перенесем влево и дополним до полных квадратов относительно х и у:
Выражаем x через y:
(вообще, правильнее было бы рассмотреть два случая: когда перед корнем стоит знак плюс, что мы и делаем, и когда перед ним стоит знак минус, но нас интересует максимальное значение, логичнее было бы рассмотреть только положительное значение)
Наша целевая функция, в которой будем находить максимум, имеет вид:
, где S - сумма решений системы уравнений.
Найдем производную по х, приравняем к нулю эту функцию
Получим
Таким образом, мы сможем найти y: y₁ = 4; y₂ = 4
Стало быть, только в точке (4;4) достигается этот максимум суммы, которая равна 4+4 = 8
Находим точку в которой модуль превращается в ноль; 2х+1=0 х=-1/2.
Эта точка разделяет действующую ось на интервалы:
(-∞;-1/2)∨(-1/2;+∞).
Обозначим знаки подмодульных функций на найденных интервалах (знаки устанавливаем простой подстановкой точек из интервала:
х∈(-∞;-1/2) -
х∈(-1/2;+∞) +
Раскрываем модули, учитывая знаки и находим решение:
-2х-1≥2,5х+1,5 4,5х≤-2,5 х≤-5/9
2х+1≥2,5x+1,5 0,5х≤-0,5 х≤-1 ⇒ х∈(-∞;-5/9].