М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vikbyk
vikbyk
14.08.2021 12:31 •  Алгебра

Из натуральных чисел вычеркнуть все числа, которые являются квадратами или кубами целых чисел. какое из чисел стоит на сотом месте

👇
Ответ:
krasotkinaeliz
krasotkinaeliz
14.08.2021

первые точные квадраты 1, 4,9, 16,25,36,49, 64, 81, 100, 121,(144),...

первые точные кубы 1, 8, 27, 64, (125),...

 

обьединяя 1,3,8,9,16,25,27, 36,49,64, 81, 100, 121,...

это числа которые мы викинем от 1 до 121

чисел 13

осталось 121-13=108 чисел

108 число 120

107 число 119

106 число 118

105 число 117

104 число 116

103 число 115

102 число 114

101 число 112

100 число 111

ответ: 111

4,7(85 оценок)
Открыть все ответы
Ответ:
toteara1
toteara1
14.08.2021
При x = 0 функция не существует на множестве действительных чисел. Раскроем модули при x≠0.
1) При x < 0:
y = (x+2)|x+1|
При x∈(-∞;-1] y = -(x+2)(x+1)
При x∈[-1;0) y = (x+2)(x+1)
2) При x > 0:
y = (x+2)|x-1|
При x∈(0;1] y = -(x+2)(x-1)
При x∈[1;+∞) y = (x+2)(x-1)
График приложу отдельной картинкой.
Будем пересекать этот график горизонтальной прямой y=m.
1) При m∈(-∞;0) одна точка пересечения
2) При m=0 три точки пересечения
3) При m∈(0;1/4) пять точек пересечения
4) При m=1/4 четыре точки пересечения
5) При m∈(1/4;2) три точки пересечения
6) При m∈[2;+∞) одна точка пересечения, так как точка сращения левой и правой частей функции является точкой устранимого разрыва (поэтому при m=2 не 2 точки пересечения, а одна).
ответ: m=1/4.
Определить, при каких значениях m прямая y=m имеет с графиком функции y=(x+2)|x-|x|/x| ровно четыре
4,4(83 оценок)
Ответ:
MIGSTERY10
MIGSTERY10
14.08.2021
Можно и индукцией доказать:
База индукции:
При n = 1:
1/(1*2) = 1/(1+1) - верно.
Предположение индукции: 
Пусть при n = k верно следующее:
1/(1*2) + ,,, + 1/(k*(k+1)) = k / (k+1)
Индукционный переход:
Докажем, что 1/(1*2) + ,,, + 1/(k*(k+1)) + 1/((k+1)(k+2)) = (k+1) / (k+2)
Заменим 1/(1*2) + ,,, + 1/(k*(k+1)) на k / (k+1), так как мы предположили верность этого равенства. Тогда должно выполняться следующее:
k / (k+1) + 1/((k+1)(k+2)) = (k+1) / (k+2)
Упростим левую часть:
k / (k+1) + 1/((k+1)(k+2)) = k*(k+2) / ((k+1)(k+2)) + 1/((k+1)(k+2)) = (k^2+2k+1)/((k+1)(k+2))=(k+1)^2 / ((k+1)(k+2)) = (k+1)/(k+2).
(k+1)/(k+2) = (k+1)/(k+2) - тождество, ч.т.д.
4,4(25 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ