Получатся два прямоугольных треугольника, в каждом из которых данные отрезки d и m будут являться гипотенузами, их проекции d₁ и m₁ катетами, а расстояние между параллельными плоскостями h катет По условию d + m = 40 Пусть х - длина проекции d₁ (40 - m) - длина проекции m₁ Применяем теорему Пифагора для первого треугольника d² - d₁² = h² и для второго m² - m₁² = h² Правые части равны, приравняв левые части, получим уравнение 13² - x² = 37² - (40 - x)² 169 - x² = 1369 - 1600 + 80x - x² 80x = 400 x = 400 : 80 х = 5 см - длина первой проекции 40 - 5 = 35 см - длина второй проекции Ищем разность 35 - 5 = 30 см ответ: 30 см
x0 = -1 Промежуток [-3, 0]
а) написать уравнение касательной
б) промежутки монотонности и экстремумы
в) наибольшее и наименьшее значение функции на указанном промежутке.
решаем.
Производная = х² - 2х - 3
х² - 2х - 3 = 0 ( ищем точки экстремумов)
По т. Виета х1 = 3 и х2 = -1
-∞ + -1 - 3 + +∞ Это знаки производной
Возрастает убывает возрастает
х = -1 - это точка максимума
х = 3 - это точка минимума
В промежуток [-3, 0] попадает только точка х = -1
Считаем:
х = -1
f(-1) = 1/3·(-1)³ -(-1)² - 3·(-1) + 9 = -1/3 -1 +3 +9 = 10 2/3 ( наибольшее значение)
х = -3
f(-3) = 1/3·(-3)³ -(-3)² -3·(-3) + 9 = -9 -9 +9 +9 = 0 (наименьшее значение)
х = 0
f(0) = 9