М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Ekaeterina44
Ekaeterina44
29.11.2020 15:00 •  Алгебра

Напишите буквами, как правильно произносить: 1,1 млд голов 1,3 млд голов

👇
Ответ:
asdf43
asdf43
29.11.2020
Одна целая одна десятая миллирдов голов, одна целая три десятых миллиардов голов.
4,5(44 оценок)
Открыть все ответы
Ответ:
peschanskaakris
peschanskaakris
29.11.2020
Дана функция:y=x^2+2x-8

Что бы построить график данной функции, исследуем данную функцию:

1. Область определения:
Так как данная функция имеет смысл при любом х. То:
D(y)=(-\infty,+\infty)

2. Область значения:
Так как данная функция - квадратичная, а так же, главный коэффициент а положителен.То, график данной функции - парабола и ее ветви направлены вверх.

Следовательно, область значения данной квадратичной функции находится следующим образом (при а>0):
\displaystyle E(y)=\left[- \frac{D}{4a},+\infty\right) - где D дискриминант.

Найдем дискриминант:
D=b^2-4ac=4+32=36

Теперь находим саму область:
\displaystyle E(y)=\left[-\frac{36}{4},+\infty \right)=[-9,+\infty)

3. Нули функции:
Всё что требуется , это решить уравнение.

\displaystyle x^2+2x-8=0\\\\x_{1,2}= \frac{-2\pm \sqrt{36} }{2} = \frac{-2\pm6}{2}=(-4),2

Следовательно, функция равна нулю в следующих точках:
(2,0)\\(-4,0)

4. Зная нули функции, найдем промежутки положительных и отрицательных значений.
Чертим координатную прямую, на ней отмечаем корни уравнения, записываем 3 получившийся промежутка и находим на данных промежутках знак функции:
(-\infty,-4) \rightarrow +\\(-4,2)\rightarrow -\\(2,+\infty)\rightarrow +

То есть:
f\ \textgreater \ 0 \rightarrow (-\infty,-4)\cup(2,+\infty)\\f\ \textless \ 0\rightarrow (-4,2)

5. Промежутки возрастания и убывания.
Для этого найдем вершину параболы:
\displaystyle x_{\text{Bep.}}=- \frac{b}{2a} =- \frac{2}{2} =-1\\\\y_{\text{Bep.}}=(-1)^2+2\cdot(-1)-8=-9

Промежуток убывания:
(-\infty,-1]

Промежуток возрастания:
[-1,+\infty)

Если вы изучали понятие экстремума, то:
---------------------------------------------------------------
6. Экстремум функции.
Так как а>0 и функция квадратичная. То вершина является минимумом данной функции.
Следовательно:
y(x)_{\min}=y(-1)=-9
---------------------------------------------------------------
7. Ось симметрии

Зная вершину, имеем следующее уравнение оси симметрии:
x=-1

Основываясь на данных, строим график данной функции. (во вложении).

Плстройте график функции y=x в квадрате +2x-8
4,7(12 оценок)
Ответ:
Kuanova2005
Kuanova2005
29.11.2020
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,5(65 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ