29.
б) в числителе выносим за скобку 5, получаем :
5(3b + 4c) / 10b
Сокращаем 5 и 10 на 5, получаем :
3b + 4c / 2b
г) В знаменателе выносим за скобку 6, получаем :
5x (y+2) / 6 (y + 2)
Сокращаем скобки (y+2) , получаем:
5x / 6
д) В знаменателе выносим за скобку a , получаем:
a - 3b / a(a-3b)
Сокращаем a-3b , получаем :
1 / a
30.
б) В числителе выносим 5 за скобку, а в знаменателе раскрываем формулу разности квадратов , получаем:
5(x - 3y) / (x-3y)(x+3y)
Сокращаем скобки (x-3y), получаем:
5 / x + 3y
г) В числителе выносим за скобку 6c , знаменатель не меняем, получаем:
6c(d-3) / (d-3)^2
Сокращаем скобки (d-3), получаем:
6c / d - 3
Формула разности квадратов :
x^2 - y^2 = (x-y) * (x+y)
2x^2-2x+y^2-2xy+2=x^2+x^2-2x+y^2-2xy+1+1=(x^2-2x+1)+(x^2-2xy+y^2)+1=
=(x-1)^2+(x-y)^2+1>=0+1+1
так как для любого выражения А: А^2=0
причем наименьшее значение 0 достигается при А=0
в нашем случае x-1=0 x-y=0 x=y=1
т.е. при x=y=1 достигается наименьшее значение выражения 2x^2-2x+y^2-2xy+2, которое равно 1
ответ: 1