ответ: в)
Объяснение: квадратичная функция, график-парабола, ветви вверх... условие существования двух различных корней: D>0
(для этой функции дискриминант всегда положителен: (5k^2-6k-11)^2+28k^4>0 для любых k...)
корни будут противоположными числами (т.е. равными по модулю и отличающимися только знаком: 5 и -5; или 1.5 и -1.5), если вершина параболы лежит на оси ОУ, т.е. имеет координаты (0; у) и у<0
при х=0, получим у = -k^4 <0
абсцисса вершины вычисляется по формуле:
-b/(2a) = -(5k^2-6k-11)/14 = 0
5k^2-6k-11=0
D=36+220=16^2
k=(6-16)/10=-1 или k=(6+16)/10=2.6
при этих значениях k вершина будет лежать на оси ОУ
2.6-1=1.6
+-1;+-2;+-11;+-33 - делители -33. Просто проверяем подстановкой каждое из этих чисел. В конечном итоге получаем, что 3 - корень уравнения. Один корень мы подобрали. Чтобы найти другие корни, можно использовать разные методы: можно использовать схему Горнера или поделим уголков на x - a, где a - подобранный корень, у нас это 3. Делим уголком уравнение на x-3. Можно по схеме Горнера подобрать коэффициенты квадратного уравнения. Так или иначе мы получаем, что
x^3 + 2x - 33 = (x-3)(x^2 + 3x + 11)
Теперь осталось лишь найти корни уравнения x^2 + 3x + 11 = 0:
D = 9 - 44 < 0 - корней нет
Значит, x = 3 - единственный корень исходного уравнения