1. найдем производную функции y=2x^3-3x^2-1у'=(2x^3-3x^2-1)'=6x^2-6x 2. находим точки при которых производная равна нулю, для этого решим уравнение у'=0 6x^2-6x=0 6х(х-1)=0 откуда получаем два уравнения 1 ур. 6х=0, =>x=0 2 yp. x-1=0 => x=1 получили две точки 0 и 1 рисуем ось иксов и на ней отображаем наши точки 0 и 1 и определяем знак производной функции(необходимо нарисовать) 1 интервал (-беск, 0): + У'(-1)=6(-1)^2-6(-1)=12 2 интерв. (0,1): - y'(0,5)=6(0,5)^2-6(0,5)=1,5-3=-1,5 3 интерв. (1, беск):+ y'(2)=6(2)^2-6(2)=24+12=36 Видим что точка х=0 является максимум функции, а х=1 соответственно минимум. Подставим эти точки в функции и найдем значения функции у(0)=0-0-1=-1 у(1)=2-3-1=-2 fmax=-1 fmin=-2
1) а) F'(x)=3*x^2+8*x-5+0 Так как (x^3)'=3*x^2, (x^2)'=2*x, (x)'=1, (C)'=0, то F'(x)=f(x) б) F'(x)=3*4*x^3-1/x=12*x^3-1/x Так как (x^4)'=4*x^3, (ln x)'=1/x, то F'(x)=f(x) 2) a) F(x)=-x^(-2)+sin x, (x^(-2))'=-2*x^(-2-1)=-2*x^-3=-2/x^3, (sin x)'=cos x и f(x)=2/x^3+cos x След. F'(x)=f(x) б) F(x)=3*e^x Так как (3*e^x)'=3*(e^x)'=3*e^x и f(x)=3*e^x, то F'(x)=f(x) 3) F(x)=x^3+2x^2+C, т. к. (x^3)'=3x^2 (2x^2)'=2*2x=4x C'=0 1. f(x)=3x^2+4x След. , F'(x)=f(x) 2. Т. к. график первообразной проходит через A(1;5), то 5=1^3+2*1+C - верное равенство 5=3+С С=2 ответ: F(x)=x^3+2x^2+2 4) у=x^2 у=9 x^2=9 х1=-3 х2=3 Границы интегрирования: -3 и 3 Чертим на коорд. пл. графики функ. у=x^2 и у=9, опускаем проекции из точек пересеч. графиков на ось х Полученный прямоугольник обозначаем как ABCD, площадь которого равна 9*(3+3)=54 S (OCD)= ∫ от 0 до 3 x^2 dx = 1/3*3^3-1/3*0=9 Т. к. S (ABO) = S (OCD), то S(иск) =54-2*9=36 В пятом условии для решения не хватает функции, график которой бы "замыкал" указанные параболы на коор. плоскости.
y=2x^3-3x^2-1у'=(2x^3-3x^2-1)'=6x^2-6x
2. находим точки при которых производная равна нулю, для этого решим уравнение у'=0
6x^2-6x=0
6х(х-1)=0
откуда получаем два уравнения
1 ур. 6х=0, =>x=0
2 yp. x-1=0 => x=1
получили две точки 0 и 1
рисуем ось иксов и на ней отображаем наши точки 0 и 1 и определяем знак производной функции(необходимо нарисовать)
1 интервал (-беск, 0): +
У'(-1)=6(-1)^2-6(-1)=12
2 интерв. (0,1): -
y'(0,5)=6(0,5)^2-6(0,5)=1,5-3=-1,5
3 интерв. (1, беск):+
y'(2)=6(2)^2-6(2)=24+12=36
Видим что точка х=0 является максимум функции, а х=1 соответственно минимум.
Подставим эти точки в функции и найдем значения функции
у(0)=0-0-1=-1
у(1)=2-3-1=-2
fmax=-1
fmin=-2