(х + 6) * (х - 3)
Объяснение:
Розв'яжемо цей квадратний тричлен як квадратне рівняння:
х^2 + 3х - 18 = 0
За теоремою Вієта:
х1 + х2 = -3
х1 * х2 = -18
Підбираємо такі значення х1 і х2, щоб вони відповідали цій системі рівнянь. Це (-6) і 3.
Скористаємось формулою розкладання квадратного тричлена на множники, а саме:
ах^2 + bx + c = a * (x - x1) * (x - x2)
Виходячи з того, ща в нашому рівнянні а=1, х1 = -6, х2 = 3, підставимо ці значення в формулу:
a * (x - x1) * (x - x2) = 1*(х - (-6)) * (х - 3) = (х + 6) * (х - 3)
Маємо квадратний тричлен, розкладений на множники
у1=0
3у+7=0
3у=-7
у=-7/3=-2 1/3
2а.
у(9-у)=0
у1=0
9-у=0
у2=9
2б.
х^2(х-1)=0
х1=0
х-1=0
х2=1