М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Siyahbeyazask1
Siyahbeyazask1
18.01.2023 23:17 •  Алгебра

Решить уравнения: x в квадрате + 8x=0 6 y в квадрате - 30y=0

👇
Ответ:
arinkaapelsink
arinkaapelsink
18.01.2023

1.х(х+8)=0

х=0 или х=-8

 

 ответ: 0;-8

2. у(у+30)=0

 

 у=0 или у=-30

ответ: 0;-30

 

 

4,7(6 оценок)
Открыть все ответы
Ответ:
катя4799
катя4799
18.01.2023
1. В вазе лежат 11 фруктов: 7 яблок и 4 груши. Сначала из вазы извлекли 1 грушу, т.е. это нам известно (вероятность 1). В вазе осталось 10 фруктов: 7 яблок и 3 груши. Вероятность того, что в этот раз будет взята груша равна:
P = \frac{3}{10} =0,3

2. В коробке лежат 10 деталей: 6 нормальных и 4 более лёгких. Значит, вероятность вытянуть из коробки лёгкую деталь равна (пусть это будет событие А):
P(A) = \frac{4}{10} = 0,4
На 6 деталей из 10 случайно сделали напыление. Тогда вероятность вытянуть деталь без напыления (пусть это будет событие В) равна:
P(B) = \frac{4}{10} = 0,4
Т.к. события А и В независимы, то вероятность их совместного появления равна произведению вероятностей:
P(AB) = P(A)*P(B) = 0,4 * 0,4 = 0,16

3. В вазе 11 цветков: 5 гвоздик и 6 нарциссов. Надо найти вероятность того, что среди 3 случайно вынутых цветков будет по крайней мере 1 гводика (пусть это событие А). Заметим, что собтытие, когда среди трёх вытащенных цветов все нарциссы, является противоположным событию А. Обозначим его \overline{A} и найдём его вероятность.
Вероятность, что первым вытянутым цветком будет нарцисс, равна 6/11. Вероятность, что и второй цветок окажется нарциссом, равна 5/10. И наконец, вероятность, что и третий цветок будет нарциссом, равна 4/9. Т.к. события незавичимы, то вероятности перемножаем:
P(\overline{A}) = \frac{6}{11}* \frac{5}{10}* \frac{4}{9} = \frac{4}{33}
Есть другой вариант вычисления данной вероятности. Надо вычислить, сколько всего есть вариантов вытащить 3 цветка из 11 (это число сочетаний по 3 из 11 - C_{11} ^3). И вычислить число вариантов выбора 3 нарциссов из 6 (C_6^3). А потом по классической формуле вероятности находится требуемая вероятность. Не всегда, но в данном случае такой путь боле громоздок.

Теперь остаётся найти нужную вероятность:
P(A) = 1 -P(\overline{A}) = 1 - \frac{4}{33} = \frac{29}{33}
4,8(98 оценок)
Ответ:
annapalko044
annapalko044
18.01.2023

Данное уравнение не имеет целых корней.

Используем метод Феррари:

уравнение вида

(1)\ x^4+ax^3+bx^2+cx+d=0

с замены x=y-\frac{a}{4}  

приводим к виду:

(2)\ y^4+p*y^2+qy+r=0

где:

p=b-\frac{3a^2}{8}\\q=\frac{a^3}{8}-\frac{a*b}{2}+c\\r=-\frac{3a^4}{256}+\frac{a^2b}{16}-\frac{a*c}{4}+d

добавим и вычтем из левой части уравнения 2 выражение 2sy^2+s^2, где s - некоторое число:

y^4+p*y^2+qy+r=y^2+py^2+2sy^2+qy+r+s^2-2sy^2-s^2=\\=y^4+2sy^2+s^2+y^2(p-2s)+qy+r-s^2=\\=(y^4+2s*y^2+s^2)+(p-2s)(y^2+\frac{2*qy}{2*(p-2s)})+r-s^2=\\=(y^2+s)^2+(p-2s)(y^2+2(\frac{qy}{2(p-2s)}+\frac{q^2}{4(p-2s)^2})-\frac{\frac{q^2}{4(p-2s)^2}}{p-2s}+r-s^2=\\=(y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2+r^2-s^2-\frac{q^2}{4(p-2s)}

получим:

(3)\ (y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2+r^2-s^2-\frac{q^2}{4(p-2s)}=0

Пусть s - корень уравнения

(4)\ r^2-s^2-\frac{q^2}{4(p-2s)}=0

Тогда уравнение 3 примет вид:

(5)(y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2=0

Избавляемся в уравнении 4 от знаменателя:

r(p-2s)-s^2(p-2s)-\frac{q^2}{4}=0

Раскроем скобки и получим:

(6)\ 2s^3-ps^2-2rs+rp-\frac{q^2}{4}=0

Уравнение 6 называется кубической резольвентой уравнения 4 степени.

Разложим уравнение 5 на множители:

(y^2+s)^2+(p-2s)(y+\frac{q}{2(p-2s)})^2=0\\(y^2+s)^2-(2s-p)(y-\frac{q}{2(2s-p)})^2=0\\(y^2+s^2)^2-(y*\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}})^2=0\\(y^2-y\sqrt{2s-p}+\frac{q}{2\sqrt{2s-p}}+s)(y^2+y\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}}+s)=0

Получим два квадратных уравнения:

(7)\ y^2-y\sqrt{2s-p}+\frac{q}{2\sqrt{2s-p}}+s=0\\(8)\ y^2+y\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}}+s=0

Применяем этот метод для решения уравнения

x^4+4x-1=0

Перепишем уравнение в полном виде:

x^4+0x^3+0x^2+4x-1=0

коэффиценты:

a=0

b=0

c=4

d=-1

определяем p,q и r:

p=b-\frac{3a^2}{8}=0\\q=\frac{a^3}{8}-\frac{a*b}{2}+c=0-0+c=4\\r=-\frac{3a^4}{256}+\frac{a^2b}{16}-\frac{a*c}{4}+d=0+0-0+d=-1

ищем s:

2s^3-ps^2-2rs+rp-\frac{q^2}{4}=0\\2s^3+2s-4=0\\s^3+s-2=0\\s=1\\1+1-2=0\Rightarrow s=1

подставляем p,q,r и s в квадратные уравнения 7 и 8:

y^2-y\sqrt{2s-p}+\frac{q}{2\sqrt{2s-p}}+s=0\\y^2-y\sqrt{2}+\frac{4}{2\sqrt{2}}+1=0\\y^2-y\sqrt{2}+\sqrt{2}+1=0\\D=2-4(\sqrt{2}+1)

y^2+y\sqrt{2s-p}-\frac{q}{2\sqrt{2s-p}}+s=0\\y^2+y\sqrt{2}-\sqrt{2}+1=0\\D=2-4(-\sqrt{2}+1)=2+4\sqrt{2}-4=4\sqrt{2}-2\\y_{1,2}=\frac{-\sqrt{2} \pm \sqrt{4\sqrt{2}-2}}{2}

Теперь находим x:

x=y-\frac{a}{4}=y-0=y

ответ: \frac{-\sqrt{2} \pm \sqrt{4\sqrt{2}-2}}{2}

4,7(12 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ