У = -3х - 1 - исходная функция параллельная ей у = -3х + к найдем к, для этого подставим в это уравнение значения х и у точки М 10 = -3*(-2) + к к + 6 = 10 к = 4 у = -3х + 4 - нужная нам функция
Есть специальная формула, которая позволяет преобразовать бесконечную периодическую десятичную дробь в обыкновенную:
,
где , a
Рассмотрим пример:
Дана бесконечная периодическая дробь
Итак, по формуле:
целая часть. У нас она равна 2
- количество цифр в периоде. У нас их 2
количество цифр до периода. У нас их 0
все цифры, включая период, в виде натурального числа. У нас это 25
все цифры без периода в виде натурального числа. Их нет.
Итак, получаем:
Подставляем в формулу:
Необходимо отметить, что под подставляется количество 9, а под -количество нулей. У нас , значит пишем две цифры 9, а , значит, нулей не пишем вообще. Между не стоит знак умножения
Чтобы число делилось на 24 оно должно делится на 3 и на 8.
Число делится на 8, если три его последние цифры образуют число, делящееся на 8.
Искомое число записывается только нулями и единицами, значит, оно заканчивается на 000.Число делится на 3, если его сумма цифр числа делится на 3.
Поскольку три послледние цифры числа нули, первые три должны быть единицами.Таким образом, единственное число, удовлетворяющее условию задачи, это число 111 000.
параллельная ей у = -3х + к
найдем к, для этого подставим в это уравнение значения х и у точки М
10 = -3*(-2) + к
к + 6 = 10
к = 4
у = -3х + 4 - нужная нам функция