Труппа театра состоит из n актеров. известно, что 4-х претендентов на ведущие роли в пьесе можно выбрать числом в 56 раз большим, чем выбрать из той же труппы 2-х претендентов на главные роли. сколько артистов в труппе?
Вариант прочтения условия № 1. Пока никто ни на какую роль не выбран, все претенденты одинаковы. Задача - выбрать k человек из n возможных.
Число вариантов выбрать k претендентов из n актеров равно биномиальному коэффициенту из n по k,
Легко проверить, что это уравнение не имеет корней в натуральных числах, поэтому (если мы не собираемся извлекать корни из актёров) в таком прочтении задача решения не имеет.
Вариант прочтения условия № 2 (предполагаемый авторами задачи). Мы выбираем не претендентов, а уже сразу актёров на роли. Тогда на первую роль можно выбрать актёра на вторую (n - 1), на третью (n - 2) и т.д., если всего ролей k, то получится n! / (n - k)! вариантов.
Общий ход построения данных графиков: График - прямая, для построения требуется две точки. Чертим координатную плоскость, подписываем оси и отмечаем положительное направление стрелками: вправо по оси х и вверх по оси у. Отмечаем центр – точку О и единичные отрезки по обеим осям в 1 клетку. Далее заполняем таблицу (для каждого графика свою, приведена ниже): Х= У= Отмечаем точки в системе координат, проводим через них прямую. Подписываем график. Всё! Итак, начнём:
у=-4х - прямая, проходящая через начало координат , поэтому достаточно ещё одной точки, например х=1, у= -4 , ставим точку (1;-4) и проводим прямую через эту точку и начало координат.
Пока никто ни на какую роль не выбран, все претенденты одинаковы. Задача - выбрать k человек из n возможных.
Число вариантов выбрать k претендентов из n актеров равно биномиальному коэффициенту из n по k,
Легко проверить, что это уравнение не имеет корней в натуральных числах, поэтому (если мы не собираемся извлекать корни из актёров) в таком прочтении задача решения не имеет.
Вариант прочтения условия № 2 (предполагаемый авторами задачи).
Мы выбираем не претендентов, а уже сразу актёров на роли. Тогда на первую роль можно выбрать актёра на вторую (n - 1), на третью (n - 2) и т.д., если всего ролей k, то получится n! / (n - k)! вариантов.
n (n - 1)(n - 2)(n - 3) = 56n(n - 1)
(n - 2)(n - 3) = 56
n = 10
ответ. n = 10.
_______________________________________
По моему скромному мнению, второй вариант на самом деле не соответствует условию, так что на лицо просчет составителей задачи.