Расстояние внутренней точки правильного треугольника до его сторон соответственно равны длинам векторов а (1 2 3) b (1 2 1) c (2 3 1). найдите высоту этого треугольника
Сумма расстояний от любой точки внутри правильного треугольника до сторон этого треугольника равна его высоте. Сумма расстояний(h) у нас должна быть: длина вектора a + длина вектора b + длина вектора c Длина вектора находится по формуле √x^2+y^2+z^2 Найдём длину вектора a, подставив под формулу, получилось √14 Найдем длину вектора b, подставив под формулу, получилось √6 Найдем длину вектора c, подставив под формулу, получилось √14 Теперь сложим их: √14+√6+√14= 2√14 +√6 - это наш ответ.
Это у=синх, а синх+2, будет тоже самое, только график переместится по оси у не 2 единицы вверх. свойства Область определения функции — множество R всех действительных чисел.
Множество значений функции — отрезок [1; 3], т. е. синус функция — ограниченная.
Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно точко (0,2).
Функция периодическая с наименьшим положительным периодом 2π:
sin(x+2π·k) +2 = sin x + 2, где k ∈ Z для всех х ∈ R. sin x +2 не равна 0 при x любое
sin x+2 > 0 (положительная) для всех x любое sin x +2< 0 (отрицательная) не бывает отрицательной.
Функция возрастает от 1 до 3 на промежутках: Функция убывает от 1 до 3 на промежутках: Наибольшее значение функции sin x+2 = 3 в точках: х= пи/2+2π·k где k ∈ Z Наименьшее значение функции sin x +2 = 1 в точках: х=3пи/2+2π·k где k ∈ Z
Сумма расстояний(h) у нас должна быть: длина вектора a + длина вектора b + длина вектора c
Длина вектора находится по формуле √x^2+y^2+z^2
Найдём длину вектора a, подставив под формулу, получилось √14
Найдем длину вектора b, подставив под формулу, получилось √6
Найдем длину вектора c, подставив под формулу, получилось √14
Теперь сложим их: √14+√6+√14= 2√14 +√6 - это наш ответ.