В решении.
Объяснение:
Составьте математическую модель данной ситуации.
Теплоход проходит расстояние между двумя пристанями по течению реки за 3 ч, а против течения (между теми же пристанями) – за 3,8 ч. Собственная скорость теплохода b км/ч, а скорость течения реки n км/ч.
а) Найти скорость теплохода по течению реки и против течения реки.
по течению: (b+n) км/час; против течения (b-n) км/час.
б) Найти расстояние, которое теплоход проплыл по течению реки.
3*(b+n) км;
в) Найти расстояние, которое теплоход проплыл против течения реки.
3,8*(b-n) км;
г) Сравнить расстояние (>, <, =), пройденное теплоходом по течению реки и против течения реки.
3*(b+n) км = 3,8*(b-n) км.
Первый проще взять по частям, нафиг тут подстановка.
u = x du = dx;
dv = cos³xdx v = ∫cos²x d(sinx) = ∫1-sin²xd(sinx) = sinx - sin³x/3;
∫ = uv - ∫vdu = x[sinx - sin³x/3] - ∫sinx - sin³x/3 dx.
Вычисляем второй интеграл.
∫sinx dx = -cosx;
∫sin³x/3 dx = -(1/3)∫sin²x d(cosx) = -(1/3)∫1-cos²xd(cosx) = -(1/3) [cosx - cos³x/3]
Все, дальше думай головой :))
А второй - да, проще подставить. lnx = t x=e^t; dx = e^tdt
∫t*e^tdt - а теперь по частям по той же схеме. Получится x*lnx - x
Константы везде выкинул, но не забывай о них ))
=