как найти точки пересечения графика функции с осями координат?
с осью абсцисс график функции может иметь любое количество общих точек (или ни одной). с осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).
чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).
чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).
примеры.
1) найти точки пересечения графика линейной функции y=kx+b с осями координат.
решение:
в точке пересечения графика функции с осью ox y=0:
kx+b=0, => x= -b/k. таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).
в точке пересечения с осью oy x=0:
y=k∙0+b=b. отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).
например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.2x-10=0; x=5. с ox график пересекается в точке (5; 0).
y=2∙0-10=-10. с oy график пересекается в точке (0; -10).
2) найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.
решение:
в точке пересечения графика с осью абсцисс y=0. значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью ox, надо решить квадратное уравнение ax²+bx+c=0.
в зависимости от дискриминанта, парабола пресекает ось абсцисс в одной точке или в двух точках либо не пересекает ox.
в точке пересечения графика с осью oy x=0.
y=a∙0²+b∙0+c=с. следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.
например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.
x²-9x+20=0
x1=4; x2=5. график пересекает ось абсцисс в точках (4; 0) и (5; 0).
y=0²-9∙0+20=20. отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.
√((x+20)/x) -√(-(x -20)/x) = 6 ;
ОДЗ :{ (x+20)/x ≥ 0 ;(x-20)/x ≤0. { x∈ (-∞; -20] U (0;∞) ; x∈( 0;20]. ⇔ x∈( 0;20].
или
√(20/x +1) = 6 +√(20/x -1) ;
(√(20/x +1))² = (6 +√(20/x -1))² ;
20/x +1 = 36 +12√(20/x -1) + 20/x -1
√(20/x -1) = -17/6 невозможно (√ ≥ 0) ;
8
2). √(20/x +1) + √(20/x -1) = √6 ;
ОДЗ : x∈( 0;20] смотри предыдущий пункт .
√(20/x +1) = √6 - √(20/x -1) ;
(√(20/x +1))² = (√6 - √(20/x -1))² ;²
20/x +1 = 6 -2√6*√(20/x -1) +20/x -1 ;
2√6*√(20/x -1) = 4 ;
√6*√(20/x -1) =2 ;
6*(20/x -1) = 4 ;
20/x -1 = 2/3 ;
20/x = 5/3 ;
4/x =1/3 ;
x=12 ∈ ОДЗ .
ответ:12 .
проверка
√(20/12 +1) + √(20/12 -1) = √16/6 +√4/6 =4/√6 + 2/√6 =6/√6=√6.