4 (м) ткани на 1 платье.
2 (м) ткани на 1 юбку.
Объяснение:
На изготовление четырех платьев и пяти юбок израсходовали двадцать шесть метров ткани, а на изготовление шести платьев и четырех юбок израсходовали тридцать два метра ткани. Сколько ткани потребуется на пошив одного платья и сколько ткани потребуется на пошив одной юбки?
х - ткани на 1 платье
у - ткани на 1 юбку
Согласно условию задачи составляем систему уравнений:
4х+5у=26
6х+4у=32
Разделим второе уравнение на 4 для упрощения:
4х+5у=26
1,5х+у=8
Выразим у через х во втором уравнении, подставим выражение в первое уравнение и вычислим х:
у=8-1,5х
4х+5(8-1,5х)=26
4х+40-7,5х=26
-3,5х=26-40
-3,5х= -14
х= -14/-3,5
х=4 (м) ткани на 1 платье.
у=8-1,5х
у=8-1,5*4
у=8-6
у=2 (м) ткани на 1 юбку.
Проверка:
4*4+5*2=26
6*4+4*2=32, верно.
Для решения неравенства методом интервалов будем выполнять следующие шаги
1) найдем корни уравнения уравнения
(x+3)(x-4)(x-6)=0
произведение равно нуля когда любой из множителей равен нулю
х+3=0 или х-4=0 или х-6=0
тогда х= -3 или х= 4 или х=6
2) Нарисуем числовую ось и отметив полученные точки
-3 4 6
3) в каждом из полученных промежутков определим знак нашего выражения
при х< -3 проверим для точки х= -5
(-5+3)(-5-4)(-5-6)=(-)(-)(-) <0
при -3<x<4 проверим для точки х=0
(0+3)(0-4)(0-6)=(+)(-)(-)>0
при 4<x<6 проверим для точки х=5
(5+3)(5-4)(5-6)=(+)(+)(-)<0
при x>6 проверим для точки х=10
(10+3)(10-4)(10-6)= (+)(+)(+)>0
4) расставим полученные знаки над промежутками
--3+4-6__+
5) и теперь осталось выбрать промежутки где стоит знак "минус"
( по условию <0)
Запишем полученные промежутки (-∞; -3) ∪(4;6)