Дано:
t(против течения)=3 ч
t(по течению)=2 ч
S=48 км
v(течения)=2 км/час
Найти:
v(собств.)=? км/час
Пусть х км/час - собственная скорость лодки. Тогда скорость лодки по течению реки равна:
v(по теч.)=v(собств.)+v(течения)=х+2 км/час
Скорость лодки против течения реки равна:
v(против теч.)=v(собств.)-v(течения)=х-2 км/час.
По течению реки за 2 часа со скорость (х+2) км/час лодка проплыла расстояние:
S(расстояние)=v(скорость)×t(время)=(х+2)×2=2х+4 км
Против течения за 3 часа со скоростью (х-2) км/час расстояние:
3(х-2)=3х-6 км.
Всего лодка проплыла 48 км (расстояние против течения+расстояние по течению).
(2х+4)+(3х-6)=48
2х+4+3х-6=48
5х-2=48
5х=48+2
5х=50
х=50÷5
х=10 (км/час) - собственная скорость лодки
ответ:
y=x^3-2x^2+x+2 y'=3x^2-2\cdot 2x+1=3x^2-4x+1
y= \sqrt{x} (2\sin x+1) y'=( \sqrt{x})' (2\sin x+1)+ \sqrt{x} (2\sin x+1)'= = \dfrac{1}{2 \sqrt{x} } (2\sin x+1)+ \sqrt{x} \cdot 2\cos x= \dfrac{\sin x}{ \sqrt{x} } + \dfrac{1}{2 \sqrt{x} } + 2\sqrt{x} \cos x
y= \dfrac{1}{x^2} =x^{-2} y'=-2x^{-2-1}=-2x^{-3}=- \dfrac{2}{x^3}
y= \dfrac{1}{\cos x} =(\cos x)^{-1} y'=-(\cos x)^{-1-1}\cdot (\cos x)'=-(\cos x)^{-2}\cdot (-\sin x)= \dfrac{\sin x}{\cos ^2x}
y=3x^2- \dfrac{2}{x^3} =3x^2- 2x^{-3} y'=3\cdot 2x- 2\cdot(-3x^{-4})=6x+ 6x^{-4}=6x+ \dfrac{6}{x^4}
y=\mathrm{tg}x+ \dfrac{1}{x} y'= \dfrac{1}{\cos^2x}- \dfrac{1}{x^2}
объяснение:
я перепесал с интернета без обид
2x+4y=-16
x=7+0,5y
x=(-16-4y)/2
7+0,5y=-8-2y
2,5y=-15 =>y=-6
x=7+0,5y=7-3
x=4
y-3x = -6-12 = -18
y-3x=-18