М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gg726690
gg726690
27.11.2021 01:29 •  Алгебра

Решить по теме тригонометрические уравнения ^2 это степень типа ,* это умножение,это дробь 4x/3 1)cos^2x-12sinx*cosx-13sin2^x=0 2)2sinx-3cosx=0 3)sin2x-sin3x+sin8x-sin7x=0 4)cos4x/3-5sin2x/3-3=0

👇
Ответ:
Enotlk1337
Enotlk1337
27.11.2021
\cos^2x-12\sin x\cos x-13\sin^2x=0|:\sin^2x\\ ctg^2x-12ctgx-13=0
Пусть ctg x= t, тогда получаем
t^2-12t-13=0
 Подибраем корни по т. Виета
t_1=-1;\,\,\,\,\,\,t_2=13

Возвращаемся к замене
ctg x=-1\\ x_1= \frac{3 \pi }{4} + \pi n,n \in Z\\ \\ ctg x=13\\ x=arcctg13+ \pi n,n \in Z

2) 2\sin x-3\cos x=0|:\cos x
2tg x-3=0\\ tgx=1.5\\ x=arctg(1.5)+ \pi n,n \in Z

3) \sin 2x-\sin 3x+\sin 8x-\sin 7x=0
-(\sin7x+\sin 3x)+\sin 8x+\sin 2x=0\\ -2\sin 5x\cos2x+2\sin5x\cos3x=0\\-2\sin 5x(\cos2x-\cos 3x)=0\\ 4\sin 5x\sin \frac{5x}{2} \sin \frac{x}{2} =0 \\ \\ \sin5x=0\\ 5x=\pi k,k \in Z\\x= \frac{\pi k}{5} , k \in Z\\ \\ \sin \frac{5x}{2} =0\\ x= \frac{2 \pi k}{5}, k \in Z

\sin\frac{x}{2}=0\\ x=2 \pi k,k \in Z

\cos \frac{4x}{3} -5\sin \frac{2x}{3} -3=0\\ 1-2\sin^2\frac{2x}{3} -5\sin\frac{2x}{3} -3=0\\ 2\sin^2\frac{2x}{3} +5\sin\frac{2x}{3} +2=0
Пусть \sin\frac{2x}{3} =t, причем |t|≤1

2t^2+5t+2=0\\ D=b^2-4ac=25-16=9 \\ t_1= \frac{-5+3}{4}=-0.5
t_2= \frac{-5-3}{4}=-2 - не удовлетворяет условию при |t|≤1

Возвращаемся к замене
\sin\frac{2x}{3} =-0.5 \\ \frac{2x}{3} =(-1)^{k+1}\cdot \frac{\pi}{6}+ \pi k,k \in Z \\ 2x=(-1)^{k+1}\cdot \frac{\pi}{2} +3 \pi k, k \in Z \\ x=(-1)^{k+1}\cdot \frac{\pi}{4}+ \frac{3 \pi k}{2} , k \in Z
4,5(100 оценок)
Открыть все ответы
Ответ:
бра4
бра4
27.11.2021
||x-2|-3x|=2x+2
Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов.
при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2
Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2
 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2)
Следующим шагом раскрываем модуль на интервале (1/2;2)
-2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2)
Раскроем внутренний модуль для x>2
|x-2-3x|=2x+2⇒|-2-2x|=2x+2
Подмодульная функция  положительная при x<-1 и отрицательная при x>-1
раскрываем модуль на интервале (2;∞)
2+2x=2x+2⇒x∈(2;∞)
итак, х∈{0;(2;∞)}
.
:) решите уравнение: ||х-2|-3х|=2х+2
4,6(64 оценок)
Ответ:
catkama
catkama
27.11.2021
Сначала вырази  синусы данных углов через синус углов из первой четверти:
sin (–55°) = –sin 55°,
потом sin 600° = sin (240° + 360°) = sin 240° = sin (180° + 60°) =
 =–sin 60°,
sin 1295° = sin (215° + 3*360°) = sin 215° = sin (180° + 35°) = –sin 35°.
И так как углы 55°, 60° и 35° принадлежат первой четверти, в которой большему углу соответствует больший синус,
то sin 35° < sin 55° < sin 60°.
Но тогда –sin 35° > –sin 55° > –sin 60°,
а поэтому sin 1295° > sin (–55°) > sin 600°.
ответ:sin 600°, sin (–55°), 1295°
4,4(9 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ