А) q=12/-3=-4 б) c3=c2*q=12*(-4)=-48 в) c(n)=c1*q^(n-1)=-3*(-4)^(n-1)=3/4*(-4)^n г) c6=3/4*(-4)^6=3*4^5=3*1024=3072 д) Так как для произвольного члена прогрессии c(n) не выполняется ни равенство с(n+1)>c(n), ни равенство c(n+1)<c(n), то прогрессия не является ни возрастающей, ни убывающей. e) Это прогрессия -3, -12, -48,, т.е. прогрессия c c1=-3 и знаменателем q=4 ж) Одна, указанная выше. Другие прогрессиии имеют другой знаменатель q, поэтому даже если у них с1=-3, то другие члены с нечётными номерами не будут совпадать с членами данной прогрессии.
Запишем условия: Ширина нам неизвестна, поэтому её мы возьмём за 'X' Длина на 10 больше ширины, значит на 10 больше 'X' Ширина - x Длина - x+10 S(площадь)=24см Чтобы решить эту задачу, составим простое уравнение. S(площадь)=длина*ширина 24 = (x+10)*x 24=x^2+10X x^2+10x-24=0 D=b^2-4ac=196
x1=-12 x2=2
У нас получилось два корня, но -12 нам не подходит, потому что ширина прямоугольника не может быть отрицательной. Следовательно, ширина прямоугольника равна 2.
22,5 м
Объяснение:
Скорость точки прямолинейного движения изменяется по закону
υ(t)=15·t-5·t² м/с.
Тогда из υ(t)=0 получаем t₀ - время начало движения и t₁ - время остановки:
15·t-5·t²=0 ⇔ 5·t·(3-t)=0 ⇔ t₀=0 и t₁=3.
Так как производная от пути S(t) равна скорости, то есть S'(t)=υ(t), определяем S(t) интегрированием:
S(t)=∫υ(t)dt=∫(15·t-5·t²)dt=15·t²/2 - 5·t³/3 + С.
В начале движения пройдённый путь равна нулю и поэтому:
S(t)=0 ⇔ 15·0²/2 - 5·0³/3 + С = 0 ⇔ С=0.
Значит S(t)=15·t²/2 - 5·t³/3. Тогда
S(3)=15·3²/2 - 5·3³/3=135/2 - 45=67,5-45=22,5 м.