Пусть скорость велосипедиста равна х километров в час. Тогда скорость мотоциклиста равна (х + 15) километров в час. За 2,5 часа мотоциклист проехал:
2,5(х + 15) километров.
За 4 часа велосипедист проехал:
4х километров.
Составим уравнение:
2,5(х + 15) = 4х.
Решим уравнение и найдем неизвестное х:
2,5х + 37,5 = 4х.
1,5х = 37,5.
х = 37,5 : 1,5.
х = 25.
Скорость велосипедиста равна 25 километров в час. Тогда скорость мотоциклиста:
25 + 15 = 40 километров в час.
Расстояние равно:
2,5 * 40 = 100.
ответ: скорость мотоциклиста - 40 км/час, скорость велосипедиста - 25 км/час. Расстояние между городами - 100 километров.
Рассмотрение математических задач, решавшихся в Древнем Египте и Вавилоне, показывает, что еще в глубокой древности возникли некоторые приемы приближенных вычислений. Под влиянием запросов техники в настоящее время разработаны разные методы приближенных вычислений.
Большие заслуги в развитии теории приближенных вычислений имеет академик Алексей Николаевич Крылов (1863 - 1945). Он в 1942 году писал: «Во всех справочниках, как русских, так и иностранных, рекомендуемые приемы численных вычислений могут служить образцом, как эти вычисления делать не надо… вычисление должно производиться с той степенью точности, которая необходима для практики, причем всякая неверная цифра составляет ошибку, а всякая лишняя цифра – половину ошибки».