Допустимые значения переменной "х" - это те значения, которые брать можно. А что значит: можно? Когда говорят про допустимые значения переменной "х", то имеют в виду такие значения, при которых данный пример решается ( можно вычислить ответ. И мы должны помнить, что иногда действия выполнить нельзя (делить на 0 нельзя и т.д.)) а)(5у -8)/11 в этом выражение есть умножение, вычитание и деление на 11. Все эти действия выполняются при любом "у" ответ: у - любое б)25/(у - 9) В этом выражении есть вычитание и деление. вычитание можно выполнить при любом "у", а вот делить на 0 нельзя. ответ: у ≠ 9 в) (у² +1)/(у² -2у) И здесь есть деление. посмотрим когда знаменатель = 0 у² - 2у = 0 у(у -2) = 0 у = 0 или у - 2 = 0 у = 2 ответ: у ≠ 0 ; у ≠ 2
Вас просто пугает, что прямые не лежат в плоскостях граней. Но "проекции на лист бумаги" этих прямых, и - главное - точек пересечения с плоскостями граней построить совсем не сложно. Точки M и N лежат на смежных гранях, линией пересечения которых является ребро AD. Если провести DM и DN, то они где-то пересекут ребра основания. Пусть DM пересекает AC в точке Q, а DN пересекает AB в точке P. Все 5 точек D, M, Q, P, N лежат в одной плоскости, проходящей через прямые DM и DN. Значит (это ооочень тривиальное утверждение), в этой плоскости лежат и прямые PQ и NM. "Проекции этих прямых на лист бумаги" тоже (разумеется) выглядят, как прямые. То есть можно смело проводить на бумаге прямые NM и PQ до пересечения в точке R. Точка R будет отражать на чертеже реальную точку пересечения этих прямых. Важно то, что точка R принадлежит прямой PQ, которая лежит в плоскости основания, и прямой NM, которая лежит в плоскости сечения (которое и строится в задаче). Плоскости основания и плоскости сечения также принадлежит и точка K. То есть прямая RK принадлежит сечению. Она пересекает ребра AC и BC в каких-то точках (пусть это E и F). Которые тоже принадлежат сечению. Дальше все еще проще простого :). Проводится ЕМ до пересечения с AD в точке G, проводится GN до пересечения с DB в точке H, соединяются H и F. Все.
Объяснение:
1)
2)
3)
4)
Наверно так, если в условии написано так