М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
PollyHyper
PollyHyper
12.02.2023 09:40 •  Алгебра

Найдите наибольшее значение функции y=4cosx + 2(√2)x - (√2/2)pi + 2 - 2√2 на отрезке [0; pi/2]. нужно!

👇
Ответ:
marijasoe19gmailcon
marijasoe19gmailcon
12.02.2023
Решение во вложениииииииииииииииииииииииии

Найдите наибольшее значение функции y=4cosx + 2(√2)x - (√2/2)pi + 2 - 2√2 на отрезке [0; pi/2]. нужн
4,6(78 оценок)
Ответ:
alinachaiun
alinachaiun
12.02.2023
y=4cosx+2 \sqrt{2} x- \frac{ \sqrt{2} \pi }{2} +2-2 \sqrt{2} \\ y'=-4sinx+2\sqrt{2} =0 \\ 4sinx=2\sqrt{2} \\ sinx= \frac{\sqrt{2}}{2} \\ x_1= \frac{ \pi }{4} ,x_2= \frac{3 \pi }{4}
x_2= \frac{3 \pi }{4} - не находится в данном промежутке [0; \frac{ \pi }{2} ] , не рассматриваем.

Теперь находим значения функции в данных нам точках ( 0\frac{ \pi }{2} и в найденной нами \frac{ \pi }{4} )
Подставляем в исходную функцию.

y(0)=4cos0+0- \frac{\sqrt{2} \pi }{2} +2-2\sqrt{2}=6- \frac{\sqrt{2} \pi }{2} -2\sqrt{2}

y( \frac{ \pi }{2}) =4cos \frac{ \pi }{2}+ \frac{2 \sqrt{2} \pi }{2} - \frac{ \sqrt{2} \pi }{2} +2-2 \sqrt{2} = \sqrt{2} \pi - \frac{ \sqrt{2} \pi }{2} +2-2 \sqrt{2}

y( \frac{ \pi }{4} )=4cos\frac{ \pi }{4} + \frac{2 \sqrt{2} \pi }{4} - \frac{ \sqrt{2} \pi }{2} +2-2 \sqrt{2} -=2

ответ: y наиб. =2
4,8(10 оценок)
Открыть все ответы
Ответ:
Lena5737488
Lena5737488
12.02.2023
Трололо, с русским тоже бяда.

1) 800 * 5% = 800 * 0.05 = 40 - скидка
800 - 40 = 760 - цена чайника
1000 - 760 = 240 - сдача.

2) √35 чуть меньше чем 6. Подумай, почему.
√120 - почти 11.
В порядке возрастания (если нужно будет в обратном, поменяешь местами): 2, 3, √35, 6.5, √120, 13.

3) Трапеция прямоугольная, значит одна боковая сторона тоже образует прямые углы с основаниями, как у квадрата. Эта сторона будет меньше, так как расположена под прямым углом, следовательно равна 9. Большая - 15. Отсекаем прямоугольник, проводя высоту с другой стороны трапеции, остаётся треугольник со сторонами 9, 15 и одной неизвестной, которую находим по теореме Пифагора:
15^2 = x^2 + 9^2
15^2 - 9^2 = x^2
x^2 = 225 - 81 = 144;
x = √144

Большее основание = меньшее основание + X.
4,4(61 оценок)
Ответ:
Lenna231
Lenna231
12.02.2023
√(4-x^2) *(2sinx-√3)=0
4-x^2≥0   ili      2sinx-√3=0
4-x^2=0             sinx=√3/2
x=-2; x=2            x=(-1)^n arcsin(√3/2)+πn;n celoe
  -     +      -           x=(-1)^n (π/3)+πn; x [-2:2] ; x=-2π/3; π/3
--- -2--2>x

x [-2;2]
ответ.-2;2; -2π/3;π/3 точно не знаю! Напиши мне ответ, просто интересно!
2)√(5/4-х) -√(5/4+х)=√1/2-1/2 х); 

   (√(5-4х) -√(5+4х))/2=(√1-х) /√2; возведем в квадрат
 (5-4х+5+4х-2√(5-4х)(5+4х) ) /4=(1-х)/2; умножим на 4
10-2√(25 - 16x^2)=2(1-x)
-2√(25-16x^2)=-8-2x;  √(25-16x^2)=4+x
25-16x^2=(4+x)^2;  -16x^2-x^2-8x-16+25=0; -17x^2-8x+9=0; 17x^2+8x-9=0
D1=4^2-17*(-9)=16+153=169=13^2; x=(-4+-13)/17; x1=-1;x2=9/17
Проверка x=9/17;  √(5/4-9/17)  -√(5/4+9/17)=√1/2-1/2 *9/17;
                               √(85-36)/68) -√(5/4+9/17)/68=√49/68=7/√68;
                                √(1/2-1/2*9/17)=√((17-9)/68=√(8/68)
                             Равенство неверно! х=9/17 не корень уравнения
х=-1;          √(5/4+1 - √(5/4-1)=√(1/2+1/2)
                  3/2-1/2=1 верно! х=-1 корень уравнения
                   
ответ-1
4,6(9 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ