М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mikich2
Mikich2
09.08.2021 00:13 •  Алгебра

Сократите дробь: b^2-b b^2-1 какое из следующих выражений равно 32*2^n 2^n+5 32^n 64^n 2^5n

👇
Ответ:
Кимчи12
Кимчи12
09.08.2021
\displaystyle \frac{b^2-b}{b^2-1}=\frac{b(b-1)}{(b-1)(b+1)}=\boxed{\frac{b}{b+1}}\phantom{.};

\displaystyle 32\cdot 2^n=2^5\cdot 2^n=2^{5+n}=\boxed{2^{n+5}}\phantom{.}.
4,6(74 оценок)
Открыть все ответы
Ответ:
agasan420
agasan420
09.08.2021
AxC280-xB
1-й                                          2-й

C-точка встречи
AC=x
CB=280-x
T1=1ч30мин=3/2 ч
Т2=2ч40мин=2 +40/60=2 2/3=8/3
S=VT    V=S/T
V1=(280-x)/3/2=2(280-x)/3
V2=x/8/3=3x/8
и заметим что до встречи они проехали одинаковое время
AC/V1=CB/V2
x : 2(280-x)/3 = (280-x) : 3x/8
3x/2(280-x)=8(280-x)/3x
9x²=16(280-x)²
так как все везде положительное то не будем делвть сложных возведений в степень ( хотите сделайте) а вместо этого возьмем корень слева справа
3x=4(280-x)
3x=4*280-4x
7x=4*4*70
x=160 встретились на расстояние от А
V2=3*160.8=60 км ч
V1=2*120/3=80 км ч
T=280/(60+80)=2 часа

Немного нетривиальная задача Немного повозится надо
ПЕрвое что они ехали одно и тоже время до встречи и аккуратно расписать все скорости и времена
4,4(80 оценок)
Ответ:
hjhffff
hjhffff
09.08.2021

-1\leq x\leq 3  или x \in [-1;3]

Объяснение:

Модуль раскрывается двумя вариантами: со знаком + или со знаком - . В этой задаче 2 модуля, следовательно максимум может быть 4 раскрытия.  

|x|=\left \{ {{x, x\geq 0} \atop {-x,x

|x-2|=\left \{ {{x-2, x\geq 2} \atop {2-x,x

На практике имеем 3 области:

1)$ $ x\leq 0\\2)$ $ 0\leq x\leq 2\\3)$ $ x\geq 2

Область \left \{ {{x\leq 0} \atop {x\geq 2}} \right. не существует, т.к. нет пересечений у неравенств, задающих область.

Рассмотрим каждый из трех случаев:

1) $ $ x\leq 0\\\\-x+2-x\leq 4\\-2x+2\leq 4\\-2x\leq 2\\\\x\geq -1

Получили решение, лежащее в области: -1\leq x\leq 0

2) $ $ 0\leq x\leq 2\\\\x+2-x\leq 4\\\\2\leq 4

Получили неравенство, выполненное для любого x из этой области. Следовательно решение в этой области - сама область: 0\leq x\leq 2

3) $ $ x\geq 2\\\\x+x-2\leq 4\\2x-2\leq 4\\2x\leq 6\\\\x\leq 3

Получили решение, лежащее в области: 2\leq x\leq 3

"Сшиваем" полученные решение и получаем:

-1\leq x\leq 3  или x \in [-1;3]

4,8(76 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ