а) y =∛( (x²-5x +4) /(x-4) ) ; т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то y =∛( (x²-5x +4) /(x-4) ) ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * * (точка с абсциссой x = 4 будет выколота на графике функции ) y = ∛ (x -1) , x ≠ 4 . --- Пересечение с координатными осями : В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy) В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox) Если x → -∞ , y → -∞ Если x → ∞ , y → ∞
б) y = ((x^2-x-6)/(x-3)) ^(1/4) y =( (x-3)(x+2) / x-3) ) ^(1/4) ; y = (x+2) /( x-3) /(x - 3) ^(1/4) ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) . точка с абсциссой x = 3 будет выколота на графике функции y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) . Пересечение с координатными осями : (0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2 (-2 ; 0) c осью ординат График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле , Удачи Вам!
Задача 1. Можно методом подбора найти эти числа. 11- сумма 5+6 А их произведение - 30. Но если требуется вычислить их, следует составить систему: |а+b=11 |ab=30 Выразим а через b a=11-b Подставим в выражение площади: ab=(11-b)b (11-b)b=30 Получится квадратное уравнение с теми же корнями: Его решение даст тот же результат: 5 и 6. ( Вычисления давать ну буду, они простые) Задача 2) Полупериметр прямоугольника 42:2=21. Методом подбора найдем числа 7 и 14. Система: |а+b=21 |ab=98 Дальнейшее решение по схеме, данной выше. Квадратное уравнение, корни 7 и 14 Задача 3) Подбором числа в третьей задаче найти вряд ли получится, но в принципе решение ничем не отличается от предыдущих. Один катет обозначим а, второй b b=(а+41) По т.Пифагора квадрат гипотенузы равен сумме квадратов катетов. 89²=а²+(а+41)² 89²=a²+a²+82а+ 41² 2a²+82а+ 6240 а²+41а-3120=0 корни уравнения ( катеты) 39 и 80 Найти площадь прямоугольного треугольника по формуле S=ab:2 уже не составит труда.
y =∛( (x²-5x +4) /(x-4) ) ;
т.к. x²- 5x +4 = x²- x - 4x+4 =x(x-1) - 4(x -1) =(x -1)(x - 4) , то
y =∛( (x²-5x +4) /(x-4) )
ОДЗ : x ≠ 4 * * * иначе x ∈ ( -∞ ; 4) ∪ (4 ; ∞) * * *
(точка с абсциссой x = 4 будет выколота на графике функции )
y = ∛ (x -1) , x ≠ 4 .
---
Пересечение с координатными осями :
В точке (0 ; -1) график данной функции пересекается с осью ординат (Oy)
В точке (1 ; 0) график данной функции пересекается с осью абсцисс (Ox)
Если x → -∞ , y → -∞
Если x → ∞ , y → ∞
б)
y = ((x^2-x-6)/(x-3)) ^(1/4)
y =( (x-3)(x+2) / x-3) ) ^(1/4) ;
y = (x+2) /( x-3) /(x - 3) ^(1/4)
ОДЗ : { x+2 ≥ 0 ; x ≠ 3 , т.е. x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
точка с абсциссой x = 3 будет выколота на графике функции
y = (x+2) ^(1/4) , x ∈ [ -2 ; 3) ∪ (3 ; ∞) .
Пересечение с координатными осями :
(0 ; 1,2) c осью абсцисс * * * (2) ^(1/4) )≈ 1,2
(-2 ; 0) c осью ординат
График расположен в верхней полуплоскости ( у ≥ 0 )
Схематические графики этих функции приведен в прикрепленном файле
,
Удачи Вам!