1) по теореме косинусов имеем: a² = b² + c² - 2bc cos a = 25 - 24 cos 135° = 25 + 12√2 a = √(25 + 12√2) по теореме синусов, a / sin a = b / sin b sin b = sin a · b / a = √2 / 2 · 3 / √(25 + 12√2) = 3 / √(50 + 24√2) ∠b = arcsin(3 / √(50 + 24√2)) ∠c = 180° - 135° - ∠b = 45° - arcsin(3 / √(50 + 24√2)) 2) ∠a = 180° - ∠b - ∠c = 65° по теореме синусов b / sin b = a / sin a b = a sin b / sin a = 24.6 · √2 / 2 / (sin 65°) = 123√2 / (10 sin 65°) по теореме синусов c / sin c = a / sin a c = a sin c / sin a = 24.6 ·sin 70° / sin 65°
1 y=x² 1)x=2 y=4 2)x=-3/4 y=9/16 2 1)x²=9 x1=-3 U x2=3 (-3;9);(3;9) 2)x²=-x x²+x=0 x(x+1)=0 x1=0⇒y1=0 x2=-1⇒y2=1 (0;0);(-1;1) 3 y=x²,вершина в точке (0;0)-точка минимума у=0-наименьшее у(-4)=16 наибольшее (3)=9 х -4 -3 -2 -1 0 1 2 3 у 16 9 4 1 0 1 4 9 по этим точкам строишь график 4 1)х²=х Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=х по точкам (0;0) и (1;1) ответ (0;0);(1;1) 2)Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=2х-1 по точкам (0;-1) и (1;1) ответ (1;1) 5 y1=x² и у2=6х-5 Строишь параболу у=х² по таблице которая в №3 Строишь прямую у=6х-5 по точкам (0;-5) и (1;1) ответ (5;0)4(1;1)