: если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором
. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения
, два произвольных числа, но
. Пусть мы имеем функцию
, тогда вычисляем значения функции в этих двух точках, имеем
и
, так вот, если
, тогда функция возрастающая, если же
, то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)
, т.е. функция возрастающая. А вот задание с
не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной)
. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка):
, функция возрастает, что и требовалось доказать.
Объяснение:
Для того, чтобы найти координаты точки пересечения графиков функций y = 1.5x и 2y + 2x = 27, необходимо решить систему уравнений:
y = 1.5x;
2y + 2x = 27.
Решения данной системы уравнений и будет координатами точки пересечения графиков данных функций.
Решаем данную систему уравнений.
Подставляя во второе уравнение значение y = 1.5x из первого уравнения, получаем:
2 * 1.5x + 2x = 27;
3х + 2х = 27;
5х = 27;
х = 27 / 5;
х = 5.4.
Зная х, находим у:
y = 1.5x = 1.5 * 5.4 = 8.1.
ответ: координаты точки пересечения графиков данных функций (5.4; 8.1)