М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
long6
long6
08.10.2020 01:40 •  Алгебра

При каких значениях а модуль разности квадратов корней трехчлена (а+1)*х^2+(a+3)*x-4a-4 равен 15

👇
Ответ:
Tinochka173
Tinochka173
08.10.2020
|x_1^2-x_2^2|=15 тогда и только тогда, когда
(x_1^2-x_2^2)^2=(x_1-x_2)^2(x_1+x_2)^2=((x_1+x_1)^2-4x_1x_2)(x_1+x_2)^2=15^2. Обозначим через t сумму корней. По т. Виета t=x_1+x_2=-(a+3)/(a+1), x_1x_2=-(4a+4)/(a+1)=-4. Таким образом, (t^2+16)t^2=15^2. Отсюда t^2=9 и t^2=-25, т.е. t=\pm 3. Значит, из условия t=-(a+3)/(a+1)=\pm3 находим  a=-3/2 и a=0. В обоих случаях дискриминант уравнения положителен, т.е. имеются  2 действительных корня, поэтому ответ a=-3/2 и a=0.
4,4(44 оценок)
Ответ:
daryabatova
daryabatova
08.10.2020
Во-первых, а =/= -1, потому что иначе коэффициент при x^2 будет = 0.
Во-вторых, решаем уравнение
(a+1)*x^2 + (a+3)*x + (-4a-4) = 0
Можно решить традиционным
D = (a+3)^2 - 4(a+1)(-4a-4) = (a+3)^2 + 16(a+1)^2 =
= a^2 + 6a + 9 + 16a^2 + 32a + 16 = 17a^2 + 38a + 25 > 0 при любом а.
x1 = (-a-3 - √(17a^2 + 38a + 25)) / (2a+2)
x2 = (-a-3 + √(17a^2 + 38a + 25)) / (2a+2)
Но в принципе это все неважно. Рассмотрим модуль разности
|x1^2 - x2^2| = |(x1 - x2)(x1 + x2)| = 15
Denik777 навел меня на мысль. Разность квадратов корней нужно возвести в квадрат.
(x1^2 - x2^2)^2 = (x1 - x2)^2 * (x1 + x2)^2 = 15^2 = 225
(x1^2 - 2x1*x2 + x2^2)(x1 + x2)^2 = 225
(x1^2 + 2x1*x2 + x2^2 - 4x1*x2)(x1 + x2)^2 = 225
((x1 + x2)^2 - 4x1*x2)(x1 + x2)^2 = 225
По теореме Виета x1 + x2 = -(a+3)/(a+1); x1*x2 = (-4a-4)/(a+1) = -4
((a+3)^2/(a+1)^2 - 4(-4))*(a+3)^2/(a+1)^2 = 225
((a+3)^2 + 16(a+1)^2)*(a+3)^2 / (a+1)^4 = 225
Первая скобка равна D, который мы уже вычислили
(17a^2 + 38a + 25)(a^2 + 6a + 9) = 225(a + 1)^4
17a^4+38a^3+25a^2+102a^3+228a^2+150a+153a^2+342a+225 =
= 225a^4 + 900a^3 + 1350a^2 + 900a + 225
Упрощаем
208a^4 + 760a^3 + 944a^2 + 408a = 0
Делим на 8
26a^4 + 95a^3 + 118a^2 + 51a = 0
a1 = 0
26a^3 + 95a^2 + 118a + 51 = 0
Кубическое уравнение имеет как минимум 1 корень.
И в данном случае отрицательный. При a > 0 корней явно нет.
F(-3) = -150 < 0; F(-2) = -13 < 0; F(-1) = 2 > 0
-2 < a2 < -1
Можно уточнить, например до точности 0,1
F(-1,4) = -26*1,4^3 + 95*1,4^2 - 118*1,4 + 51 = 0,656 > 0
F(-1,5) = -26*1,5^3 + 95*1,5^2 - 118*1,5 + 51 = 0
a2 = -1,5

Denik777 в итоге все равно сделал проще и понятнее.
Что-то меня последнее время тянет на сложности.
4,5(84 оценок)
Открыть все ответы
Ответ:
lol2710
lol2710
08.10.2020
1) a+b+c=0 => a+b=-c => (a+b)³=(-c)³ => a³+3a²b+3ab²+b³=-c³ =>
=> a³+b³+c³=-(3a²b+3ab²) => a³+b³+c³=-3ab(a+b) => a³+b³+c³=-3ab(-c) =>
=> a³+b³+c³=3abc
2) Обратное утверждение:
Если a³+b³+c³=3abc, то a+b+c=0 (думаю, имеется в виду, что a+b+c обязательно будет равно 0, и не существует других вариантов).
Из утверждения следует, что c³-3abc+a³+b³=0. Допустим, известны числа a и b. Тогда c³-3abc+a³+b³=0 является кубическим уравнением относительно c. Как известно, любое кубическое уравнение с рациональными коэффициентами имеет ровно три корня (необязательно действительных). Отсюда следует, что при фиксированных a и b и при 3-х вариантах c получится три варианта для суммы a+b+c, одним из которых является a+b+c=0.
Таким образом, пункт 1 является верным. Пункт 2 не является верным.
Найдем другие два варианта для c.
Известно, что в уравнении c³-3abc+a³+b³=0 одним из решений является c=-(a+b), так как при подстановке в уравнение получится тождество. Разложим левую часть уравнения на скобки:
c³-3abc+a³+b³=(a+b+c)(c²-c(a+b)+a²-ab+b²).
Решим уравнение c²-c(a+b)+a²-ab+b²=0 относительно c:
D=(-(a+b))²-4(a²-ab+b²)=a²+2ab+b²-4a²+4ab-4b²=-3(a²-2ab+b²)=-3(a-b)²≤0
c1,2=((a+b)+-√3(a-b)*i)/2, где i²=-1, i - мнимая единица.
Если D=0, то a=b, а выражение для c примет такой вид: c=(a+b)/2=(a+a)/2=a. Получим, что в этом случае a=b=c, а сумма a+b+c=3a для любого a.
Если D<0, то c1=(a+b)/2+i√3(a-b)/2,
c2=(a+b)/2-i√3(a-b)/2.
А возможные варианты для суммы станут такими:
a+b+c=a+b+(a+b)/2+i√3(a-b)/2=3(a+b)/2+i√3(a-b)/2,
или
a+b+c=a+b+(a+b)/2-i√3(a-b)/2=3(a+b)/2-i√3(a-b)/2
4,4(93 оценок)
Ответ:
Edam
Edam
08.10.2020
Пусть масса первого раствора х  г, тогда в этом растворе
х:100·4= 0,04х г соли.
Масса второго раствора (х+3496) г, в этом растворе
(х+3496):100·73=0,73(х+3496)

Масса нового раствора равна сумме масс первого и второго растворов, т.е. х+(х+3496)=2х+3496
Масса соли в нем 0,48(2х+3496) равна сумме масс соли первого и второго растворов 0,04х+0,73(х+3496).
Уравнение:
0,48·(2х + 3496) = 0,04х+0,73·(х+3496);
0,96х + 1678,08 = 0,04х + 0,73х + 2552,08;
0,96х - 0,04х - 0, 73х = 2552,08 - 1678,08;
0,19х = 874;
х = 4600.
х+3496=4600+3496=8096 г
 
О т в е т. Масса второго раствора 8096 г
4,7(31 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ